
Interactive Web
Programming

1st semester of 2021

Murilo Camargos
(murilo.filho@fgv.br)

Heavily based on Victoria Kirst slides

https://web.stanford.edu/class/archive/cs/cs193x/cs193x.1176/lectures/

Today's schedule

Schedule:

- Box model

- Debugging with Chrome Inspector

- Case study: Squarespace Layout

- Flexbox

Announcements:

- Homework 1 is out! Due Mar 18.

Next week:

- Intro to JavaScript

https://murilocamargos.github.io/iwp/homework/1-tv-show-list

Last class
Quick Review

Block vs Inline

1. block: flows top-to-bottom; has height and width

<p>, <h1>, <blockquote>, , , <table>

2. inline: flows left-to-right; does not have height and width

<a>, , ,

a. inline block: flows left-to-right; has height and width

equal to size of the content

CSS Selectors

Example Description

p All <p> elements

.abc All elements with the abc class, i.e. class="abc"

#abc Element with the abc id, i.e. id="abc"

p.abc <p> elements with abc class

p#abc <p> element with abc id (p is redundant)

div strong elements that are descendants of a <div>

h2, div <h2> elements and <div>s

Generic elements div vs span

Two generic tags with no intended purpose or style:

● <div>: a generic block element

● : a generic inline element

Technically, you can define your entire web page using <div>

and the class attribute.

● Is this a good idea?

● Why does HTML have ids when you have classes?

● Why does HTML have <p>, <h1>, , etc. when you

have <div>, , class, and id?

CSS Box Model

The CSS Box Model

Every element is composed of 4 layers:

● the element's content

● the border around the element's content

● padding space between the content and border (inside)

● a margin clears the area around border (outside)

border

We've used the shorthand:

border: width style color;

https://developer.mozilla.org/en-US/docs/Web/CSS/border#Syntax

border

Can also specify each border individually:

border-top

border-bottom

border-left

border-right

And can set each property individually:

border-style: dotted; (all styles)

border-width: 3px;

border-color: purple;

https://developer.mozilla.org/en-US/docs/Web/CSS/border-style#Values

border

Can also specify each border individually:

border-top

border-bottom

border-left

border-right

And can set each property individually:

border-style: dotted; (all styles)

border-width: 3px;

border-color: purple;
There are other units besides
pixels (px) but we will address

them latter.

https://developer.mozilla.org/en-US/docs/Web/CSS/border-style#Values

Rounded border

Can specify the border-radius to make rounded corners:

border-radius: 10px;

You don't actually need to set a border to use

border-radius.

Borders look a little squished

When we add a border

to an element, it sits

flush against the text:

Q: How do we add

space between the

border and the content

of the element?

padding

padding is the space between the border and the content.

- Can specify padding-top, padding-bottom,

padding-left, padding-right

- There's also a shorthand:

padding: 2px 4px 3px 1px; <- top|right|bottom|left

padding: 10px 2px; <- top+bottom|left+right

https://developer.mozilla.org/en-US/docs/Web/CSS/padding#Syntax

<div>s look a little squished

When we add a border

to multiple divs, they sit

flush against each

other:

Q: How do we add

space between

multiple elements?

margin

margin is the space between the border and other elements.

- Can specify margin-top, margin-bottom,

margin-left, margin-right

- There's also a shorthand:

margin: 2px 4px 3px 1px; <- top|right|bottom|left

margin: 10px 2px; <- top+bottom|left+right

https://developer.mozilla.org/en-US/docs/Web/CSS/padding#Syntax

margin

Actually, why doesn't this:

Look more like this?

margin

Actually, why doesn't this:

...look more like this?

20px margin-bottom +

20px margin top =

40px margin?

margin collapsing

Generally if:

- The elements are siblings

- The elements are block-level

(not inline-block)

Sometimes the top and bottom margins of block elements

are combined ("collapsed") into a single margin.

- This is called margin collapsing

then they collapse into max(Bottom Margin, Top Margin).

(There are some exceptions to this, but when in doubt, use

the Page Inspector to see what's going on.)

https://www.sitepoint.com/web-foundations/collapsing-margins/

Negative margin

Margins can be negative as well.

- No negative margin on image:

Negative margin

Margins can be negative as well. (CodePen)

- img { margin-top: -50px; }

https://codepen.io/murilocamargos/pen/dyOqEyN

auto margins

If you set margin-left and margin-right to auto, you

can center a block-level element (CodePen):

https://codepen.io/murilocamargos/pen/jOVvoEX

Box model for inline elements?

Q: Does the box model apply to inline elements as well?

Box model for inline elements?

Q: Does the box model apply to inline elements as well?

A: Yes, but the box is shaped differently.

Let's change the line

height to view this more

clearly...

https://hacks.mozilla.org/2015/03/understanding-inline-box-model/

Inline element box model

Inline element box model

- margin is to the left and
right of the inline element

- margin-top and
margin-bottom are ignored

- use line-height to
manage space between
lines

https://developer.mozilla.org/en-US/docs/Web/CSS/line-height

div {

 display: inline-block;

 background-color: yellow;

}

<body>
 <div>
 <p>Make the background color yellow!</p>
 <p>Surrounding these paragraphs</p>
 </div>
</body>

Q: What does
this look like

in the
browser?

Q: Why is there
a white space

around the
box?

We can use the
browser's Page
Inspector to help us
figure it out!

No Chrome:
 Ctrl + Shift + i

body has a default margin

Set body { margin: 0; } to make your elements lay

flush to the page.

Recap so far...

We've talked about:

- block vs inline and the "natural" layout of the page,

depending on the element type

- classes and ids and how to specify specific elements

and groups of elements

- div and span and how to create generic elements

- The CSS box model and how every element is shaped

like a box, with content -> padding -> border -> margin

Let's try making a "real" looking page!

Layout exercise

Squarespace template

Squarespace's most popular template looks like this:

Q: Do we know enough to make something like that?

https://www.squarespace.com/
https://bedford-demo.squarespace.com/

Basic shape

Begin visualizing the

layout in terms of boxes:

Basic shape

Begin visualizing the

layout in terms of boxes:

Basic shape

Begin visualizing the

layout in terms of boxes:

Let's first try making this

layout!

Codepen Link

https://codepen.io/murilocamargos/pen/KKNvMXm

Content Sectioning elements

These elements do not "do" anything; they are basically more descriptive

<div>s. Makes your HTML more readable. See MDN for more info.

Name Description

<p> Paragraph (mdn)

<h1>-<h6> Section headings (mdn)

<article> A document, page, or site (mdn)
This is usually a root container element after body.

<section> Generic section of a document (mdn)

<header> Introductory section of a document (mdn)

<footer> Footer at end of a document or section (mdn)

<nav> Navigational section (mdn)

https://developer.mozilla.org/en-US/docs/Web/HTML/Element#Content_sectioning
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/p
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/Heading_Elements
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/article
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/section
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/header
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/footer
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/nav

Content Sectioning elements
Better SEO and more accessibility

These elements do not "do" anything; they are basically more descriptive

<div>s. Makes your HTML more readable. See MDN for more info.

Name Description

<p> Paragraph (mdn)

<h1>-<h6> Section headings (mdn)

<article> A document, page, or site (mdn)
This is usually a root container element after body.

<section> Generic section of a document (mdn)

<header> Introductory section of a document (mdn)

<footer> Footer at end of a document or section (mdn)

<nav> Navigational section (mdn)

Prefer these elements
to <div> when it

makes sense!

https://developer.mozilla.org/en-US/docs/Learn/Accessibility/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML/Element#Content_sectioning
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/p
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/Heading_Elements
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/article
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/section
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/header
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/footer
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/nav

Header

Navbar:

- Height: 75px

- Background:

royalblue

- <nav>

Header:

- Height: 400px;

- Background:

lightskyblue

- <header>

Main section

 Gray box:

- Surrounding space:

75px above and

below; 100px on

each side

- Height: 500px

- Background: gray

- <section>

Footer

Footer:

- Height: 200px

- Background: Black

- <footer>

Main contents

Yellow paragraph:

- Height: 200px

- Background: khaki

- Space beneath: 75px

- <p>

Orange box:

- Height: 225x;

- Width: 48% of the

parent's width, with

space in between

- Background: tomato

- <div>

Main contents

Orange box:

- Height: 225px;

- Width: 48% of the

parent's width, with

space in between

- Background: tomato

- <div>

This is where

we get stuck.

Flexbox

CSS layout so far

Block layout:
Laying out large

sections of a page

Inline layout:
Laying out text and
other inline content

within a section

Flex layout

To achieve more complicated layouts, we can enable a

different kind of CSS layout rendering mode: Flex layout.

Flex layout defines a special set of rules for laying out items

in rows or columns.

Flex layout

Flex layout solves all sorts of problems.
- Here are some examples of layouts that are easy to create with flex

layout (and really difficult otherwise):

Flex basics

Flex layouts are composed of:

- A Flex container, which contains one or more:

- Flex item(s)

You can then apply CSS properties on the flex container to

dictate how the flex items are displayed.

id=flex-container

class=
flex-
item

Flex basics

To make an element a flex container, change display:

- Block container: display: flex; or

- Inline container: display: inline-flex;

(So far, this looks
exactly the same as
display: block)

Flex basics: justify-content

You can control where the item is horizontally* in the box

by setting justify-content on the flex container:

*when flex direction is row. We'll get

to what "flex direction" means soon.

#flex-container {

 display: flex;

 justify-content: flex-start;

}

Flex basics: justify-content

You can control where the item is horizontally* in the box

by setting justify-content on the flex container:

*when flex direction is row. We'll get

to what "flex direction" means soon.

#flex-container {

 display: flex;

 justify-content: flex-end;

}

Flex basics: justify-content

You can control where the item is horizontally* in the box

by setting justify-content on the flex container:

*when flex direction is row. We'll get

to what "flex direction" means soon.

#flex-container {

 display: flex;

 justify-content: center;

}

Flex basics: align-items

You can control where the item is vertically* in the box by

setting align-items on the flex container:

*when flex direction is row. We'll get

to what "flex direction" means soon.

#flex-container {

 display: flex;

 align-items: flex-start;

}

Flex basics: align-items

You can control where the item is vertically* in the box by

setting align-items on the flex container:

*when flex direction is row. We'll get

to what "flex direction" means soon.

#flex-container {

 display: flex;

 align-items: flex-end;

}

Flex basics: align-items

You can control where the item is vertically* in the box by

setting align-items on the flex container:

*when flex direction is row. We'll get

to what "flex direction" means soon.

#flex-container {

 display: flex;

 align-items: center;

}

Multiple items

Same rules apply with multiple flex items:

#flex-container {

 display: flex;

 justify-content: flex-start;

 align-items: center;

}

Multiple items

Same rules apply with multiple flex items:

#flex-container {

 display: flex;

 justify-content: flex-end;

 align-items: center;

}

Multiple items

Same rules apply with multiple flex items:

#flex-container {

 display: flex;

 Justify-content: center;

 align-items: center;

}

Multiple items

And there is also space-between and space-around:

#flex-container {

 display: flex;

 Justify-content: space-between;

 align-items: center;

}

Multiple items

And there is also space-between and space-around:

#flex-container {

 display: flex;

 Justify-content: space-around;

 align-items: center;

}

#flex-container {

 display: flex;

 flex-direction: column;

}

flex-direction

And you can also lay out columns instead of rows:

#flex-container {

 display: flex;

 flex-direction: column;

 justify-content: center;

}

flex-direction

And you can also lay out columns instead of rows:

Now justify-content controls

where the column is vertically in the

box

#flex-container {

 display: flex;

 flex-direction: column;

 justify-content: space-around;

}

flex-direction

And you can also lay out columns instead of rows:

Now justify-content controls

where the column is vertically in the

box

#flex-container {

 display: flex;

 flex-direction: column;

 align-items: center;

}

flex-direction

And you can also lay out columns instead of rows:

Now align-items controls where

the column is horizontally in the box

#flex-container {

 display: flex;

 flex-direction: column;

 align-items: flex-end;

}

flex-direction

And you can also lay out columns instead of rows:

Now align-items controls where

the column is horizontally in the box

Before we move
on…

What happens if the flex item is
an inline element?

???

Recall: block layouts

If #flex-container was not display: flex:

Then the span flex-items would not show up because span

elements are inline, which don't have a height and width

Flex layouts

Why does this change when display: flex?

Why do inline elements suddenly seem to have height and width?

More next time!

