
Interactive Web
Programming

1st semester of 2021

Murilo Camargos
(murilo.filho@fgv.br)

Heavily based on Victoria Kirst slides

https://web.stanford.edu/class/archive/cs/cs193x/cs193x.1176/lectures/

Today's schedule

Today
- More flexbox
- vh / vw / box-sizing
- position
- Mobile layouts
- Random helpful CSS
- CSS wrap-up

Next Tuesday:
- Intro to JavaScript

Simplicity above all else

Always prefer simplicity.

Other tips:

- Separation of concerns: HTML should contain content

NOT style, CSS should contain style NOT content

- Descriptive HTML tags: Make your HTML more

readable by using e.g. <header> instead of <div>

when appropriate

- Reduce redundancy: Try grouping styles, using

descendant selectors to reduce redundancy (see past

slides for details)

Font-related CSS review

Name Description

font-family Font face (mdn)

color Font color (and always font color) (mdn)

font-size Font size (mdn)

line-height Line height (mdn)

text-align Alignment of text (mdn)

More font-related CSS

Name Description

text-decoration Can set underline, line-through
(strikethrough) or none (e.g. to unset
underline on hyperlinks) (mdn)

text-transform Can change font case, i.e. uppercase,
lowercase, capitalize, none (mdn)

font-style Can set to italic or normal (e.g. to
unset italic on) (mdn)

font-weight Can set to bold or normal (e.g. to unset
bold on h1 - h6) (mdn)

letter-spacing Controls the space between letters (mdn)

https://developer.mozilla.org/en-US/docs/Web/CSS/text-decoration
https://developer.mozilla.org/en-US/docs/Web/CSS/text-transform
https://developer.mozilla.org/en-US/docs/Web/CSS/font-style
https://developer.mozilla.org/en-US/docs/Web/CSS/font-weight
https://developer.mozilla.org/en-US/docs/Web/CSS/letter-spacing

Flexbox

Review: Flexbox

How do we create this look? (Codepen)

https://codepen.io/murilocamargos/pen/rNWJwBE

Review: Flexbox

How do we create this look? (Codepen)

https://codepen.io/murilocamargos/pen/NWbygqB

Continuing where
we left off!

Goal

We were trying to create

a layout that looks sort

of like this:

Status

We broke up the layout

into a bunch of colored

boxes:

And we got kind of stuck

trying to position the

orange boxes.

Recall: block layouts

If #flex-container was not display: flex:

Then the span flex-items would not show up because span

elements are inline, which don't have a height and width

What happens if the flex item is
an inline element?

???

Flex layouts

Why does this change when display: flex?

Why do inline elements suddenly seem to have height and width?

Flex: A different rendering mode

- When you set a container to display: flex, the

direct children in that container are flex items and

follow a new set of rules.

- Flex items are not block or inline; they have different

rules for their height, width, and layout.

- The contents of a flex item follow the usual

block/inline rules, relative to the flex item's

boundary.

- The height and width of flex items are… complicated.

Flex item sizing

Flex basis

Flex items have an initial width*, which, by default is either:

- The content width, or

- The explicitly set width property of the element, or

- The explicitly set flex-basis property of the element

This initial width* of the flex item is called the flex basis.

*width in the case of rows; height in

the case of columns

Flex basis

Flex items have an initial width*, which, by default is either:

- The content width, or

- The explicitly set width property of the element, or

- The explicitly set flex-basis property of the element

This initial width* of the flex item is called the flex basis.

The explicit width* of a flex item is respected for all flex items,

regardless of whether the flex item is inline, block, or

inline-block.

*width in the case of rows; height in

the case of columns

Flex basis

If we unset the height and width, our flex items disappears,

because the flex basis is now the content size, which is empty:

flex-shrink

The width* of the flex item can automatically shrink smaller

than the flex basis via the flex-shrink property:

flex-shrink:

- If set to 1, the flex item shrinks itself as small as it can in

the space available.

- If set to 0, the flex item does not shrink.

Flex items have flex-shrink: 1 by default.

*width in the case of rows; height in

the case of columns

The flex items'

widths all shrink to

fit within the

container.

Setting flex-shrink: 0; undoes the shrinking behavior, and

the flex items do not shrink in any circumstance:

flex-grow

The width* of the flex item can automatically grow larger than

the flex basis via the flex-grow property:

flex-grow:

- If set to 1, the flex item grows itself as large as it can in the

space remaining.

- If set to 0, the flex-item does not grow.

Flex items have flex-grow: 0 by default.

*width in the case of rows; height in

the case of columns

flex-grow example

Let's unset the height and width of our flex items again:

flex-grow example

If we set flex-grow: 1, the flex items fill the empty space:

Flex item height**?!

Note that flex-grow

only controls width*.

So why does the

height** of the flex

items seem to "grow"

as well?

*width in the case of rows; height in

the case of columns

**height in the case of rows; width in

the case of columns

align-items: stretch;

The default value of

align-items is

stretch, which

means every flex item

grows vertically* to fill

the container by

default.

(This will not happen if the

height on the flex item is

set)

*vertically in the case of rows;

horizontally in the case of columns

align-items: stretch;

If we set another value for align-items, the flex items

disappear again because the height is now content height,

which is 0:

Flex layout recap

- If you set display: flex, the element is now a flex

container and its direct children are flex items.

- The items in a flex container will layout in a row or

column depending on the flex-direction of the

container.

Flex layout recap

- justify-contents distributes the items horizontally

for flex-direction: row, vertically for column

- align-items distributes the items vertically for

flex-direction: row, horizontally for column

Flex layout recap

For flex-direction: row:

- The flex basis is the initial width of a flex item
- This is either the explicitly set width, the explicitly set flex-basis,

or the content width

- The width of a flex item will shrink to fit the container if

flex-shrink is set to 1 (disabled if 0)

- The width of a flex item will grow to fit the remaining

space if flex-grow is set to 1 (disabled if 0)

Flex layout recap

For flex-direction: row:

- The height of a flex item is either:

- the explicitly set height on the item, or

- the content height on the item, or

- the height of the container if the container's

align-items: stretch;

Flex layout recap

For flex-direction: column:

- The flex basis is the initial height of a

flex item
- This is either the explicitly set height, the

explicitly set flex-basis, or the content

height

- The height of a flex item will shrink to

fit the container if flex-shrink is

set to 1 (disabled if 0)

- The height of a flex item will grow to

fit the remaining space if flex-grow

is set to 1 (disabled if 0)

Flex layout recap

For flex-direction: column:

- The width of a flex item is either:

- the explicitly set width on the item,

or

- the content width on the item,

or

- the width of the container if the

container's align-items:

stretch;

That's still just scratching the
surface of flex box…

Questions?

Height and width
quirks:
vh, vw, box-sizing

Flexbox example

How do we make a layout that looks like this?

The header and footer

stay at the top and

bottom of the viewport.

height and width percentages

When width is defined as a percentage:

- width is specified as a percentage of the containing

block's width.

When height is defined as a percentage:

- height is specified as a percentage of the containing

block's height.

In other words, height and width are defined relative to

their parent element when defined as a percentage.

https://developer.mozilla.org/en-US/docs/Web/CSS/width#Percentage
https://developer.mozilla.org/en-US/docs/Web/CSS/height#Values

height and width percentages
H

TM
L

C
SS

OUTPUT

(CodePen)

https://codepen.io/murilocamargos/pen/bGBOaEd

vh and vw

You can define height and width in terms of the viewport

- Use units vh and vw to set height and width to the

percentage of the viewport's height and width,

respectively (mdn)

- 1vh = 1/100th of the viewport height

- 1vw = 1/100th of the viewport width

Example:

- height: 100vh;

- width: 100vw;

https://developer.mozilla.org/en-US/docs/Web/CSS/length#Viewport-percentage_lengths

Viewport?

Browser vocabulary:

- viewport: the rectangle where the webpage shows up,

scrollable via a scrollbar

- chrome: all the UI that's not the webpage, i.e.

everything but the viewport

Viewport?

Browser vocabulary:

- viewport: the rectangle where the webpage shows up,

scrollable via a scrollbar

- chrome: all the UI that's not the webpage, i.e.

everything but the viewport

The
viewport

Viewport?

Browser vocabulary:

- viewport: the rectangle where the webpage shows up,

scrollable via a scrollbar

- chrome: all the UI that's not the webpage, i.e.

everything but the viewport

The Chrome

Flexbox example, solved
H

TM
L

C
SS

(CodePen)

https://codepen.io/murilocamargos/pen/OJbQgOw

Aside: sizing

Q: What happens if we add a
border to #upper-half?

??
?

The box model defines CSS width and height properties

to refer to the element's content width and height:

CSS box model width and height

If you want to have width and height refer to the

element's border width and height, use box-sizing:

- box-sizing: border-box;

box-sizing

Note: Using border-box will include padding in the width and height as well.
Note: You cannot select padding-box or margin-box.

https://developer.mozilla.org/en-US/docs/Web/CSS/box-sizing

Fixed example

Another rendering
mode: position

Moving things with position

Positioned layout lets you define precisely where an

element should be in the page (mdn).

You can use positioned layout doing the following:

1. Define a position method:

Static, fixed, absolute, relative

2. Define offsets: top, left, bottom, and right

3. (optional) Define z-index for overlapping layers (mdn)

Let's check it out!

https://developer.mozilla.org/en-US/docs/Web/CSS/position
https://developer.mozilla.org/en-US/docs/Web/CSS/z-index

Moving things with position

To specify exactly where an element goes, set

its top, left, bottom, and/or right offset.

The meaning of these offset values depend on the

reference point set by position:

- static: no reference point; static block can't move

(this is the default style for every element)

- fixed: a fixed position within the viewport

- absolute: a fixed position within its "containing

element"

- relative: offset from its normal static position

position: static
(nothing happens!)

- static is the default value for position

- If you use top / left / bottom / right without

setting a non-static position, nothing will happen

position: fixed

#menubar {
 position: fixed;
 top: 50px;
 right: 100px;
}

100px

50px

- For fixed positioning, the
offset is the distance
positioned relative to the
viewport.

- The element does not
move when scrolled.

- Element is removed from
normal document flow,
positioned on its own layer

Often used to implement
UIs; control bars that

shouldn't go away

position: fixed

position: absolute

#menubar {
 position: absolute;
 left: 400px;
 top: 50px;
}

- For absolute positioning,
the offset is the distance
from the "containing
element", which is the
html element by default

- Element is removed from
normal document flow,
positioned on its own layer

400px

50px

position: absolute

position: relative

For position: relative; the element is placed where it would
normally be placed in the layout of the page, but shifted by the top /
left / bottom / right values.

Relative absolute positioning

Let's revisit the definition of absolute positioning:

- absolute: a fixed position within its "containing

element"

- The containing element is the viewport by default

You can change the containing element by setting

"position: relative;" on some parent of your

absolutely positioned element!

Relative absolute positioning

#area2 {
 position: relative;
}

400px

50px

#menubar {
 position: absolute;
 left: 400px;
 top: 50px;
}

Offsets are relative to the first parent element that has
position: relative which in this case is #area2

Common use case: Overlay

(CodePen)

https://codepen.io/murilocamargos/pen/WNoMEjv

Let's revisit Squarespace again!
(link to solution)

https://murilocamargos.github.io/iwp/pages/bedford/index.html

Mobile web

Say you have the following website:

Q: What does it look like on a phone?

Not terrible… but pretty small and hard to read.

Responsive web design

We want to write our CSS in a way that can look nice in a

wide range of screen sizes:

- 27" desktop monitor

- Macbook Air

- Samsung Galaxy S7

- iPhone 7

- iPad

Q: How do we do this?
Do we need to write totally different

CSS for every screen size?!

Unless directed otherwise via HTML or

CSS cues, mobile browsers render web

pages at a desktop screen width

(~1000px), then "zooms out" until the

entire page fits on screen.

(That's why you sometimes get web pages with

teeny-tiny font on your phone: these webpages

have not added support for mobile.)

(Read more on how this works)

Mobile sizing

https://www.quirksmode.org/mobile/viewports.html

To prevent phone browsers from rendering the page at desktop

width and zooming out, use the meta viewport tag:

<meta name="viewport"

content="width=device-width, initial-scale=1">

This belongs in the <head> section of your HTML.
(Same section as the <title>, <link>, and other metadata elements.)

Meta viewport tag

Meta viewport tag

Without the meta

viewport tag

With the meta

viewport tag

<meta name="viewport"

content="width=device-width, initial-scale=1">

- name=viewport: "Browser, I am going to tell you how I

want the viewport to look."

- width=device-width: "The viewport's width should

always start at the device's width." (i.e., don't do that thing on

mobile where you render the page at the desktop's width)

- initial-scale=1: "Start at zoom level of 100%."

Meta viewport tag

<meta name="viewport"

content="width=device-width, initial-scale=1">

(You should pretty much always

include this tag in your HTML.)

Meta viewport tag

Making adjustments

The meta viewport tag gets us almost all

the way there, but we want to make a

few adjustments.

For example, the margin seems too big

on mobile. Can we set a different margin

property for mobile?

CSS media queries

You can define a CSS media query in order to change style

rules based on the characteristics of the device:

You can create much more complex

media queries as well.

@media (max-width: 500px) {

 article {

 padding: 1em 0;

 width: 100%;

 }

}

https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries

Development strategies

Practical question: How do you test mobile layouts?

- Do you upload your HTML+CSS somewhere online and

navigate to that URL on your phone?

- Is there a way to connect your phone to your local

device?

- Do you run it in an Android/iOS emulator?

- Other?!

Chrome device mode

You can simulate a web page in a mobile layout via Chrome

device mode:

https://developers.google.com/web/tools/chrome-devtools/device-mode/
https://developers.google.com/web/tools/chrome-devtools/device-mode/

Chrome device mode

You can simulate a web page in a mobile layout via Chrome

device mode:

https://developers.google.com/web/tools/chrome-devtools/device-mode/
https://developers.google.com/web/tools/chrome-devtools/device-mode/

Chrome device mode

You can simulate a web page in a mobile layout via Chrome

device mode:

https://developers.google.com/web/tools/chrome-devtools/device-mode/
https://developers.google.com/web/tools/chrome-devtools/device-mode/

Chrome device mode

Advantages of Chrome device mode:

- Super convenient

- Mostly accurate

Disadvantages of Chrome device mode:

- Not always accurate - iPhone particularly an issue

- A little buggy

- Doesn't simulate performance issues

You should always test on real devices, too.

Chrome remote debugging

If you have an Android phone, you can debug web pages on

your phone via Chrome remote debugging.

(You can also load a server running locally on your laptop, on your phone via port forwarding.

But we haven't talked about servers yet.)

https://developers.google.com/web/tools/chrome-devtools/remote-debugging/
https://developers.google.com/web/tools/chrome-devtools/remote-debugging/local-server

Safari remote debugging

If you have an iPhone, you can debug web pages on your

phone via Safari remote debugging.

http://developer.telerik.com/featured/a-concise-guide-to-remote-debugging-on-ios-android-and-windows-phone/

Relative font sizes:
percent, em, rem

Relative units

Whenever possible, it's best to use relative units (like

percentage) instead of absolute units (like px).

Advantages:

- More likely to work on different screen sizes

- Easier to reason about; fewer magic numbers

10% / 80% / 10% vs 122px / 926px / 122px

Q: Should we be using relative units on font-size?

Relative font sizes: percent

You can define font sizes in terms of percentage:

Relative font sizes: percent

Percent on font-size behaves exactly like percentage on

width and height, in that it's relative to the parent:

Relative font sizes: percent

Percent on font-size behaves exactly like percentage on

width and height, in that it's relative to the parent:

p is 75% of its parent, which
is 200% of 30px.

p's size: .75*2*30 = 45px

Relative font sizes: em

But instead of percentages, relative font sizes are usually

defined in terms of em:

- em represents the calculated font-size of the element

- 1em = the inherited font size

- 2em = 2 times the inherited font size

In other words,
font-size: 1em; is the same as font-size: 100%;

Relative font sizes: em

Relative font sizes: em

Relative font sizes: em

p's inherited font size is
2em, which is 60px. So
0.75em is 0.75*60 = 45px.

Wait, why is 120px and not 60px?

In the Chrome Inspector, we see the default browser
font-size for h1 is 2em. So it's 30*2*2 = 120px.

Relative font sizes: rem

If you do not want your relative font sizes to compound

through inheritance, use rem:

- rem represents the font-size of the root element

- 1rem = the root (html tag) font size

- 2rem = 2 times root font size

Relative font sizes: rem

Relative font sizes: rem

font-size is set on the
html element, not body (or
any other tag)

Relative font sizes: rem

.75em is calculated from
the root, which is 30px, so
30*.75 = 22.5px.

Relative font conclusions

Use relative fonts for the same purpose as using relative

heights and widths:

- Prefer em and rem over percentages
- Not for any deep reason, but em is meant for font so it's

semantically cleaner

- Use rem to avoid compounding sizes

- In addition to font-size, consider em/rem for:

- line-height

- margin-top

- margin-bottom

What does our Squarespace layout look like in a phone

with the meta viewport tag?

Without the meta
viewport tag

With the meta
viewport tag

Completed mobile
layout

https://murilocamargos.github.io/iwp/pages/bedford/index-mobile.html
https://murilocamargos.github.io/iwp/pages/bedford/index-mobile.html

Mobile summary

- Always add the meta viewport tag

- Use @media queries to add styles for devices with

certain characteristics, such as screen width

- Use the Chrome Device Mode to simulate mobile

rendering on desktop

- For height and width, prefer percentages

- For fonts, prefer em and rem

More on responsive web design

https://developers.google.com/web/fundamentals/design-and-ui/responsive/

Random useful CSS

calc

You can use the calc CSS function to define numeric

values in terms of expressions:

width: calc(50% - 10px);

width: calc(100% / 6);

(MDN details of calc)

https://developer.mozilla.org/en-US/docs/Web/CSS/calc
https://developer.mozilla.org/en-US/docs/Web/CSS/calc

CSS variables

Variables are a brand-new CSS feature (caniuse).

:root {

 --primary-color: hotpink;

}

h1 {

 background-color: var(--primary-color);

}

(MDN details of CSS variables)

http://caniuse.com/#search=css%20variables
https://developer.mozilla.org/en-US/docs/Web/CSS/Using_CSS_variables

background properties

An easy way to render images stretched and cropped to a

given size: set it as a background image for an element.

background-image: url(background.png);

(CodePen)

https://codepen.io/murilocamargos/pen/OJbrZPK

background properties

You can then use additional background properties to

further style it:

background-size: cover;

background-size: contain;

background-repeat: no-repeat;

background-position: top;

background-position: center;

(CodePen: Try resizing the window)

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Background_and_Borders
https://codepen.io/murilocamargos/pen/wvoyRBZ

Web Fonts

You can use Google Fonts to choose from better fonts:

https://fonts.google.com/

Web Fonts

The instructions are pretty self-explanatory:

Basically, add the given <link> tag into the <head> section

of your page alongside your other CSS files.

Aside: Fallback fonts

Notice that the Google Font example shows a

comma-separated list of values for font-family:

- Each successive font listed is a fallback, i.e. the font that will be

loaded if the previous font could not be loaded

- There are also six generic font names, which allows the browser to

choose the font based on intent + fonts available on the OS.

- It's good practice to list a generic font at the end of all your

font-family declarations.

https://developer.mozilla.org/en-US/docs/Web/CSS/font-family#%3Cgeneric-name%3E

Hosted fonts with @font-face

You can also load your own font via @font-face:

- Give it your own font name

- Link to where the font file is found

CodePen

https://developer.mozilla.org/en-US/docs/Web/CSS/@font-face
https://codepen.io/murilocamargos/pen/WNoMLre

CSS wrap-up

Even though we're "done" with CSS, we will be using CSS all

quarter in homework and examples.

Later this semester:

- More flexbox patterns

- CSS animations

- Possibly grid

https://developer.mozilla.org/en-US/docs/Web/CSS/grid

