
Interactive Web
Programming

1st semester of 2021

Murilo Camargos
(murilo.filho@fgv.br)

Heavily based on Victoria Kirst slides

https://web.stanford.edu/class/archive/cs/cs193x/cs193x.1176/lectures/

Today's schedule

Today
- Intro to Amateur JavaScript

- What is JavaScript?
- Tour of language features
- Basic event handling

Thursday
- DOM: How to interact with your web page
- HW1 due
- HW2 goes out

How do web pages
work again?

You are on
your laptop

Your laptop is
running a web
browser, e.g.

Chrome

You type a URL in
the address bar and

hit "enter"

https://murilocamargos.github.io/iwp/

(Warning: Somewhat inaccurate,
massive hand-waving begins now.

See this Quora answer for slightly more detailed/accurate handwaving)

https://www.quora.com/What-is-the-role-of-OSI-layers-when-we-open-a-webpage

Browser sends an HTTP request saying
"Please GET me the index.html file at
https://murilocamargos.github.io/iwp/"

Server at
https://murilocamargos.github.io/iwp/

(Routing,
etc…)

Assuming all goes well, the
server responds by sending the
HTML file through the internet
back to the browser to display.

Server at
https://murilocamargos.github.io/iwp/

The HTML will include things like
 and

<link src="style.css" .../>
which generate more requests for

those resources

Server at
https://murilocamargos.github.io/iwp/

Server at
https://murilocamargos.github.io/iwp/

And the server replies with
those resources for the

browser to render

Finally, when all resources are loaded,
we see the loaded web page

https://murilocamargos.github.io/iwp/

+ produces

Describes the
content and
structure of

the page
A web page…

that doesn't do
anything

Describes the
appearance
and style of

the page

What we've learned so far

We've learned how to build web pages that:

- Look the way we want them to

- Can link to other web pages

- Display differently on different screen sizes

But we don't know how build web pages that do anything:

- Get user input

- Save user input

- Show and hide elements when the user

interacts with the page

- etc.

What we've learned so far

We've learned how to build web pages that:

- Look the way we want them to

- Can link to other web pages

- Display differently on different screen sizes

But we don't know how build web pages that do anything:

- Get user input

- Save user input

- Show and hide elements when the user

interacts with the page

- etc. Enter JavaScript!

JavaScript

JavaScript

JavaScript is a programming language.

It is currently the only programming

language that your browser can execute

natively. (There are efforts to change that.)

Therefore if you want to make your web

pages do stuff, you must use JavaScript:

There are no other options.

https://www.dartlang.org/

JavaScript

- Created in 1995 by Brendan Eich

- JavaScript has nothing to do with Java

- Literally named that way for marketing reasons

- The first version was written in 10 days

- Several fundamental language decisions were made

because of company politics and not technical reasons

"I was under marketing orders to make it look like Java but

not make it too big for its britches ... [it] needed to be a silly

little brother language." (source)

https://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript
https://www.computer.org/csdl/mags/co/2012/02/mco2012020007.html

JavaScript

- Created in 1995 by Brendan Eich

- JavaScript has nothing to do with Java

- Literally named that way for marketing reasons

- The first version was written in 10 days

- Several fundamental language decisions were made

because of company politics and not technical reasons

In other words:

JavaScript is messy and full of drama…
and our only option.

(though it's gotten much, much better in the last few years)

https://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript

Our JavaScript Strategy

This week: "old-school JavaScript"

- Mostly not best practice

- Everything in global scope

- No classes / modules

- Will result in a big mess if you code this way for

anything but very small projects

- (But easy to get started)

Next week(?): Modern JavaScript

- More disciplined and based on best practices

JavaScript
in the browser

Code in web pages

HTML can embed JavaScript files into the web page via the

<script> tag.

<!DOCTYPE html>

<html>

 <head>

 <title>Interactive Web Programming</title>

 <link rel="stylesheet" href="style.css" />

 <script src="filename.js"></script>

 </head>

 <body>

 ... contents of the page...

 </body>

</html>

console.log

You can print log messages in JavaScript by calling

console.log():

console.log('Hello, world!');

script.js

This JavaScript's equivalent of Java's

System.out.println, print, printf, etc.

How does JavaScript get loaded?

 <head>

 <title>Interactive Web Programming</title>

 <link rel="stylesheet" href="style.css" />

 <script src="script.js"></script>

 </head>

The browser is parsing the HTML file, and gets to a script

tag, so it knows it needs to get the script file as well.

 <head>

 <title>Interactive Web Programming</title>

 <link rel="stylesheet" href="style.css" />

 <script src="script.js"></script>

 </head>

The browser makes a request to the server for the script.js

file, just like it would for a CSS file or an image...

 <head>

 <title>Interactive Web Programming</title>

 <link rel="stylesheet" href="style.css" />

 <script src="script.js"></script>

 </head>

And the server responds with the JavaScript file, just like it

would with a CSS file or an image...

 <head>

 <title>Interactive Web Programming</title>

 <link rel="stylesheet" href="style.css" />

 <script src="script.js"></script>

 </head>

Now at this point, the JavaScript file will execute

"client-side", or in the browser on the user's computer.

console.log('Hello, world!');

JavaScript execution

There is no "main method"

- The script file is executed from top to bottom.

There's no compilation by the developer

- JavaScript is compiled and executed on the fly by the

browser
(Note that this is slightly different than being "interpreted": see

just-in-time (JIT) compilation)

https://hacks.mozilla.org/2017/02/a-crash-course-in-just-in-time-jit-compilers/

console.log('Hello, world!');

<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8">

 <title>First JS Example</title>

 <script src="script.js"></script>

 </head>

 <body>

 </body>

</html>

script.js

first-js.html

Hey, nothing happened!

Right-click (or control-click on Mac) and choose "Inspect"

(Ctrl + Shift + I on Chrome)

Click "Console" tab

The "Console" tab is also a REPL, or an interactive language

shell, so you can type in JavaScript expressions, etc. to test

out the language.

We will be using this throughout the quarter!

https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop

JavaScript
language features

Same as Java/C++/C-style langs

for-loops:

for (let i = 0; i < 5; i++) { … }

while-loops:

while (notFinished) { … }

comments:

// comment or /* comment */

conditionals (if statements):
if (...) {

 ...

 } else {

 ...

 }

Functions

One way of defining a JavaScript function is with the

following syntax:

function name() {

 statement;

 statement;

 ...

}

Console output

function hello() {

 console.log('Hello!');

 console.log('Welcome to JavaScript');

}

hello();

hello();

script.js

Console output

function hello() {

 console.log('Hello!');

 console.log('Welcome to JavaScript');

}

hello();

hello();

script.js

The browser "executes" the

function definition first, but

that just creates the hello

function (and it doesn't run

the hello function), similar

to a variable declaration.

hello();

hello();

function hello() {

 console.log('Hello!');

 console.log('Welcome to JavaScript');

}

script.js

Q: Does this work?

hello();

hello();

function hello() {

 console.log('Hello!');

 console.log('Welcome to JavaScript');

}

script.js

A: Yes, for this particular syntax.

This works because function

declarations are "hoisted" (mdn).

You can think of it as if the

definition gets moved to the top of

the scope in which it's defined

(though that's not what actually happens).
Console output

https://developer.mozilla.org/en-US/docs/Glossary/Hoisting

hello();

hello();

function hello() {

 console.log('Hello!');

 console.log('Welcome to JavaScript');

}

script.js

Caveats:
- There are other ways to define

functions that do not get hoisted;

we'll visit this once we graduate

from Amateur JS

- Try not to rely on hoisting when

coding. It gets bad.
Console output

http://www.adequatelygood.com/JavaScript-Scoping-and-Hoisting.html

Variables: var, let, const

Declare a variable in JS with one of three keywords:

// Function scope variable

var x = 15;

// Block scope variable

let fruit = 'banana';

// Block scope constant; cannot be reassigned

const isHungry = true;

You do not declare the datatype of the variable before using it

("dynamically typed")

http://stackoverflow.com/questions/1517582/what-is-the-difference-between-statically-typed-and-dynamically-typed-languages

What's a "block"?

In the context of programming languages, a block is a group

of 0 or more statements, usually surrounded by curly

braces. (wiki / mdn)

- Also known as a compound statement

- Not JavaScript-specific; exists in most languages (C++,

Java, Python, etc)

- Has absolutely nothing to do with the HTML/CSS notion

of "block", i.e. block elements

https://en.wikipedia.org/wiki/Block_(programming)
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/block

What's a "block"?

For example, the precise definition of an if-statement might

look like:

if (expression) statement

And a block might look like

{

 console.log('Hello, world!');

 console.log('Today is a good day.');

}

A "block" or compound statement is a type of statement, which is why we can

execute multiple statements when the condition is true.

Blocks and scope

Most languages that include blocks also tie scoping rules to

blocks, i.e. via "block scope":

// C++ code, not JS:

if (...) {

 int x = 5;

 ...

}

// can't access x here

This is the behavior of Java, C++, C, etc.

https://en.wikipedia.org/wiki/Scope_(computer_science)#Block_scope

Function parameters

function printMessage(message, times) {

 for (var i = 0; i < times; i++) {

 console.log(message);

 }

}

Function parameters are not declared with var, let, or

const

Understanding var

function printMessage(message, times) {

 for (var i = 0; i < times; i++) {

 console.log(message);

 }

 console.log('Value of i is ' + i);

}

printMessage('hello', 3);

Q: What happens if we try to print "i" at

the end of the loop?

Understanding var

function printMessage(message, times) {

 for (var i = 0; i < times; i++) {

 console.log(message);

 }

 console.log('Value of i is ' + i);

}

printMessage('hello', 3);

The value of "i" is readable

outside of the for-loop because

variables declared with var

have function scope.

Function scope with var

var x = 10;

if (x > 0) {

 var y = 10;

}

console.log('Value of y is ' + y);

- Variables declared with "var" have function-level scope

and do not go out of scope at the end of blocks; only at

the end of functions

- Therefore you can refer to the same variable after the

block has ended (e.g. after the loop or if-statement in

which they are declared)

Function scope with var

But you can't refer to a variable outside of the function in

which it's declared.

Understanding let

function printMessage(message, times) {

 for (let i = 0; i < times; i++) {

 console.log(message);

 }

 console.log('Value of i is ' + i);

}

printMessage('hello', 3);

Q: What happens if we try to print "i" at

the end of the loop?

Understanding let

function printMessage(message, times) {

 for (let i = 0; i < times; i++) {

 console.log(message);

 }

 console.log('Value of i is ' + i);

}

printMessage('hello', 3);

let has

block-scope so

this results in

an error

Understanding const

let x = 10;

if (x > 0) {

 const y = 10;

}

console.log(y); // error!

Like let, const also has block-scope, so accessing the

variable outside the block results in an error

Understanding const

const y = 10;

y = 0; // error!

y++; // error!

const list = [1, 2, 3];

list.push(4); // OK

const declared variables cannot be reassigned.

However, it doesn't provide true const correctness, so you

can still modify the underlying object

- (In other words, it behaves like Java's final keyword and not C++'s const

keyword)

Contrasting with let

let y = 10;

y = 0; // OK

y++; // OK

let list = [1, 2, 3];

list.push(4); // OK

let can be reassigned, which is the difference between

const and let

Variables best practices

- Use const whenever possible.

- If you need a variable to be reassignable, use let.

- Don't use var.

- You will see a ton of example code on the internet

with var since const and let are relatively new.

- However, const and let are well-supported, so

there's no reason not to use them.

(This is also what the Google and AirBnB JavaScript Style Guides recommend.)

http://caniuse.com/#search=const
http://caniuse.com/#search=let
https://google.github.io/styleguide/jsguide.html#features-use-const-and-let
https://github.com/airbnb/javascript#variables

Variables best practices

- Use const whenever possible.

- If you need a variable to be reassignable, use let.

- Don't use var.

- You will see a ton of example code on the internet

with var since const and let are relatively new.

- However, const and let are well-supported, so

there's no reason not to use them.

(This is also what the Google and AirBnB JavaScript Style Guides recommend.)

Aside: The internet has a ton of
misinformation about JavaScript!

Including several "accepted" StackOverflow answers,
tutorials, etc. Lots of stuff online is years out of date.

Tread carefully.

http://caniuse.com/#search=const
http://caniuse.com/#search=let
https://google.github.io/styleguide/jsguide.html#features-use-const-and-let
https://github.com/airbnb/javascript#variables

Types

JS variables do not have types, but the values do.

There are nine primitive types (mdn):

- Boolean: true and false

- Number: everything is a double (no integers)

- BigInt: new definition for integers that falls outside the allowed

range for representation

- String: in 'single' or "double-quotes"

- Symbol: (skipping this today)

- Undefined: the value of a variable with no value assigned

- Null: null: a value meaning "this has no value"

There are also Object types, including Array, Date, String (the object

wrapper for the primitive type), etc.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures
https://developer.mozilla.org/en-US/docs/Glossary/Boolean
https://developer.mozilla.org/en-US/docs/Glossary/Number
https://developer.mozilla.org/en-US/docs/Glossary/BigInt
https://developer.mozilla.org/en-US/docs/Glossary/String
https://developer.mozilla.org/en-US/docs/Glossary/Symbol
https://developer.mozilla.org/en-US/docs/Glossary/Undefined
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/null
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures

Numbers

const homework = 0.45;

const midterm = 0.2;

const final = 0.35;

const score =

 homework * 87 + midterm * 90 + final * 95;

console.log(score); // 90.4

Numbers

- All numbers are floating point real numbers. No integer type.

- Operators are like Java or C++.

- Precedence like Java or C++.

- A few special values: NaN (not-a-number), +Infinity, -Infinity

- There's a Math class: Math.floor, Math.ceil, etc.

const homework = 0.45;

const midterm = 0.2;

const final = 0.35;

const score =

 homework * 87 + midterm * 90 + final * 95;

console.log(score); // 90.4

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/NaN
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math

Strings

let snack = 'coo';

snack += 'kies';

snack = snack.toUpperCase();

console.log("I want " + snack);

Strings

- Can be defined with single or double quotes
- Many style guides prefer single-quote, but there is no functionality difference

- Immutable

- No char type: letters are strings of length one

- Can use plus for concatenation

- Can check size via length property (not function)

let snack = 'coo';

snack += 'kies';

snack = snack.toUpperCase();

console.log("I want " + snack);

https://github.com/airbnb/javascript#strings
https://google.github.io/styleguide/jsguide.html#features-strings-use-single-quotes

Boolean

- There are two literal values for boolean: true and false that

behave as you would expect

- Can use the usual boolean operators: && || !

let isHungry = true;

let isTeenager = age > 12 && age < 20;

if (isHungry && isTeenager) {

 pizza++;

}

Boolean

- Non-boolean values can be used in control statements, which

get converted to their "truthy" or "falsy" value:

- null, undefined, 0, NaN, '', "" evaluate to false

- Everything else evaluates to true

if (username) {

 // username is defined

 }

Equality

JavaScript's == and != are basically broken: they do an

implicit type conversion before the comparison.

'' == '0' // false

'' == 0 // true

0 == '0' // true

NaN == NaN // false

[''] == '' // true

false == undefined // false

false == null // false

null == undefined // true

Equality

Instead of fixing == and != , the ECMAScript standard kept

the existing behavior but added === and !==

'' === '0' // false

'' === 0 // false

0 === '0' // false

NaN == NaN // still weirdly false

[''] === '' // false

false === undefined // false

false === null // false

null === undefined // false

Always use === and !== and don't use == or !=

Null and Undefined

What's the difference?

- null is a value representing the absence of a value,

similar to null in Java and nullptr in C++.

- undefined is the value given to a variable that has not

been a value.

Null and Undefined

What's the difference?

- null is a value representing the absence of a value,

similar to null in Java and nullptr in C++.

- undefined is the value given to a variable that has not

been a value.

- … however, you can also set a variable's value to

undefined

Arrays

Arrays are Object types used to create lists of data.

// Creates an empty list

let list = [];

let groceries = ['milk', 'cocoa puffs'];

groceries[1] = 'kix';

- 0-based indexing

- Mutable

- Can check size via length property (not function)

Looping through an array

You can use the familiar for-loop to iterate through a list:

let groceries = ['milk', 'cocoa puffs', 'tea'];

for (let i = 0; i < groceries.length; i++) {

 console.log(groceries[i]);

}

Or use a for-each loop via for...of (mdn):
(intuition: for each item of the groceries list)

for (let item of groceries) {

 console.log(item);

}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...of

Maps through Objects

● Every JavaScript object is a collection of property-value

pairs. (We'll talk about this more later.)

● Therefore you can define maps by creating Objects:

// Creates an empty object

const prices = {};

const scores = {

 'peach': 100,

 'mario': 88,

 'luigi': 91

};

console.log(scores['peach']); // 100

Maps through Objects

FYI, string keys do not need quotes around them.

Without the quotes, the keys are still of type string.

// This is the same as the previous slide.

const scores = {

 peach: 100,

 mario: 88,

 luigi: 91

};

console.log(scores['peach']); // 100

Maps through Objects

There are two ways to access the value of a property:

1. objectName[property]

2. objectName.property
(2 only works for string keys.)

const scores = {

 peach: 100,

 mario: 88,

 luigi: 91

};

console.log(scores['peach']); // 100

console.log(scores.luigi); // 91

Maps through Objects

There are two ways to access the value of a property:

1. objectName[property]

2. objectName.property
(2 only works for string keys.)

const scores = {

 peach: 100,

 mario: 88,

 luigi: 91

};

console.log(scores['peach']); // 100

scores.luigi = 87;

console.log(scores.luigi); // 91

Generally prefer style (2),
unless the property is

stored in a variable, or if
the property is not a

string.

Maps through Objects

To add a property to an object, name the property and give

it a value:

const scores = {

 peach: 100,

 mario: 88,

 luigi: 91

};

scores.toad = 72;

let name = 'wario';

scores[name] = 102;

console.log(scores);

Maps through Objects

To remove a property to an object, use delete:

const scores = {

 peach: 100,

 mario: 88,

 luigi: 91

};

scores.toad = 72;

let name = 'wario';

scores[name] = 102;

delete scores.peach;

console.log(scores);

Iterating through Map

Iterate through a map using a for...in loop (mdn):
(intuition: for each key in the object)

for (key in object) {

// … do something with object[key]

}

for (let name in scores) {

console.log(name + ' got ' + scores[name]);

}

- Use for...in on object types

- Use for...of on list types

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...in

Events

Event-driven programming

Most JavaScript written in the browser is event-driven:

The code doesn't run right away, but it executes after some

event fires.

Click Me!

Example:

Here is a UI element that

the user can interact with.

Click Me!

Event-driven programming

Most JavaScript written in the browser is event-driven:

The code doesn't run right away, but it executes after some

event fires.

When the user clicks the button...

Event-driven programming

Most JavaScript written in the browser is event-driven:

The code doesn't run right away, but it executes after some

event fires.

Click Me!

EVENT!

...the button emits an "event," which

is like an announcement that some

interesting thing has occurred.

Event-driven programming

Most JavaScript written in the browser is event-driven:

The code doesn't run right away, but it executes after some

event fires.

Click Me!

EVENT! function onClick() {

 ...

}

Any function listening to that event

now executes. This function is called

an "event handler."

Quick aside…

Let's learn some input-related
HTML elements

A few more HTML elements

Buttons:

Single-line text input:

Multi-line text input:

Using event listeners

Let's print "Clicked" to the Web Console when the user

clicks the given button:

We need to add an event listener to the button...

How do we talk to an element in HTML from JavaScript?

The DOM

Every element on a page is accessible in JavaScript through

the DOM: Document Object Model

<html>

<head>

<title></title>

</head>

<body>

<h1></h1>

<div>

<p></p>

</div>

</body>

</html>

The DOM

The DOM is a tree of node objects corresponding to the

HTML elements on a page.

- JS code can examine these nodes to see the state of an

element
- (e.g. to get what the user typed in a text box)

- JS code can edit the attributes of these nodes to change

the attributes of an element
- (e.g. to toggle a style or to change the contents of an <h1> tag)

- JS code can add elements to and remove elements

from a web page by adding and removing nodes from

the DOM

How do we access a DOM object
from JavaScript?

Getting DOM objects

We can access an HTML element's corresponding DOM node in

JavaScript via the querySelector function:

document.querySelector('css selector');
- Returns the first element that matches the given CSS selector.

And via the querySelectorAll function:

document.querySelectorAll('css selector');
- Returns all elements that match the given CSS selector.

https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector
https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelectorall

Adding event listeners

Each DOM object has the following function:

addEventListener(event name, function name);

- event name is the string name of the JavaScript event

you want to listen to

- Common ones: click, focus, blur, etc

- function name is the name of the JavaScript function

you want to execute when the event fires

https://developer.mozilla.org/en-US/docs/Web/Events

Error! Why?

 <head>

 <title>Interactive Web Programming</title>

 <link rel="stylesheet" href="style.css" />

 <script src="script.js"></script>

 </head>

 <head>

 <title>Interactive Web Programming</title>

 <link rel="stylesheet" href="style.css" />

 <script src="script.js"></script>

 </head>

 <head>

 <title>Interactive Web Programming</title>

 <link rel="stylesheet" href="style.css" />

 <script src="script.js"></script>

 </head>

 <head>

 <title>Interactive Web Programming</title>

 <link rel="stylesheet" href="style.css" />

 <script src="script.js"></script>

 </head>

function onClick() {

 console.log('clicked');

}

const button = document.querySelector('button');

button.addEventListener('click', onClick);

 <head>

 <title>Interactive Web Programming</title>

 <link rel="stylesheet" href="style.css" />

 <script src="script.js"></script>

 </head>

function onClick() {

 console.log('clicked');

}

const button = document.querySelector('button');

button.addEventListener('click', onClick);

 <head>

 <title>Interactive Web Programming</title>

 <link rel="stylesheet" href="style.css" />

 <script src="script.js"></script>

 </head>

function onClick() {

 console.log('clicked');

}

const button = document.querySelector('button');

button.addEventListener('click', onClick);

We are only at the <script> tag, which is at the top of the

document… so the <button> isn't available yet.

 <head>

 <title>Interactive Web Programming</title>

 <link rel="stylesheet" href="style.css" />

 <script src="script.js"></script>

 </head>

function onClick() {

 console.log('clicked');

}

const button = document.querySelector('button');

button.addEventListener('click', onClick);

Therefore querySelector returns null, and we can't call

addEventListener on null.

Use defer

You can add the defer attribute onto the script tag so that

the JavaScript doesn't execute until after the DOM is loaded

(mdn):

<script src="script.js" defer></script>

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script

Use defer

You can add the defer attribute onto the script tag so that

the JavaScript doesn't execute until after the DOM is loaded

(mdn):

<script src="script.js" defer></script>

Other old-school ways of doing this (don't do these):

- Put the <script> tag at the bottom of the page

- Listen for the "load" event on the window object

You will see tons of examples on the internet that do this.

They are out of date. defer is widely supported and better.

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script
http://caniuse.com/#search=defer

Log messages aren't so interesting...

How do we interact with the page?

A few technical details

The DOM objects that we retrieve from querySelector

and querySelectorAll have types:

- Every DOM node is of general type Node (an interface)

- Element implements the Node interface
(FYI: This has nothing to do with NodeJS, if you've heard of that)

- Each HTML element has a specific Element derived

class, like HTMLImageElement

https://developer.mozilla.org/en-US/docs/Web/API/Node
https://developer.mozilla.org/en-US/docs/Web/API/Element
https://developer.mozilla.org/en-US/docs/Web/API/Node
https://developer.mozilla.org/en-US/docs/Web/API/Element
https://developer.mozilla.org/en-US/docs/Web/API/htmlimageelement

Attributes and DOM properties

Roughly every attribute on an HTML element is a property

on its respective DOM object...

HTML

JavaScript
const element = document.querySelector('img');

element.src = 'bear.png';

(But you should always check the JavaScript spec to be

sure. In this case, check the HTMLImageElement.)

https://developer.mozilla.org/en-US/docs/Web/API/htmlimageelement

Adding and removing classes

You can control classes applied to an HTML element via

classList.add and classList.remove:

const image = document.querySelector('img');

// Adds a CSS class called "active".

image.classList.add('active');

// Removes a CSS class called "hidden".

image.classList.remove('hidden');

(More on classList)

https://developer.mozilla.org/en-US/docs/Web/API/Element/classList

Next time...
Example: Present

See the CodePen -
much more exciting!

https://codepen.io/murilocamargos/pen/RwoebMy?editors=1010

