
Interactive Web
Programming

1st semester of 2021

Murilo Camargos
(murilo.filho@fgv.br)

Heavily based on Victoria Kirst slides

https://web.stanford.edu/class/archive/cs/cs193x/cs193x.1176/lectures/

Today's schedule

Today
- Finish up gift example
- Case study: Tic-Tac-Toe
- DOM revisited
- A bit about browser extensions

Announcements

- HW2 is out!

Forgot last time: List operations

Method Description

list.push(element) Add element to back

list.unshift(element) Add element to front

Method Description

list.pop() Remove from back

list.shift() Remove from front

Method Description

list.indexOf(element)
Returns numeric index for element or -1 if
none found

Forgot last time: splice

Add/remove element at index: splice

list.splice(startIndex, deleteCount, item1, item2, ...)

Remove one element at index 3:

list.splice(3, 1);

Add element at index 2:

list.splice(2, 0, element);

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/splice?v=example

Back to events, etc...

Example: Present

See the CodePen -
much more exciting!

https://codepen.io/murilocamargos/pen/RwoebMy?editors=1010

Finding the element twice...

This redundancy is unfortunate.

Q: Is there a way to fix it?

Finding the element twice...

This redundancy is unfortunate.

Q: Is there a way to fix it?

CodePen

https://codepen.io/murilocamargos/pen/poNxzVo?editors=1010

Event.currentTarget

An Event element is passed to the listener as a parameter:

The event's currentTarget property is a reference to

the object that we attached to the event, in this case the

's Element to which we added the listener.

https://developer.mozilla.org/en-US/docs/Web/API/Event
https://developer.mozilla.org/en-US/docs/Web/API/Event/currentTarget
https://developer.mozilla.org/en-US/docs/Web/API/element

Not to be confused with Event.target

(Note: Event has both:

- event.target: the element that was clicked /

"dispatched the event" (might be a child of the target)

- event.currentTarget: the element that the original

event handler was attached to)

https://developer.mozilla.org/en-US/docs/Web/API/Event/target
https://developer.mozilla.org/en-US/docs/Web/API/Event/currentTarget

Example: Present

It would be nice to
change the text after the
present is "opened"...

Some properties of Element objects

Property Description

id The value of the id attribute of the element, as a string

innerHTML
The raw HTML between the starting and ending tags of an
element, as a string

textContent
The text content of a node and its descendants. (This
property is inherited from Node)

classList An object containing the classes applied to the element

Maybe we can adjust the
textContent!

CodePen

https://developer.mozilla.org/en-US/docs/Web/API/Element/id
https://developer.mozilla.org/en-US/docs/Web/API/Element/innerhtml
https://developer.mozilla.org/en-US/docs/Web/API/Node/textContent
https://developer.mozilla.org/en-US/docs/Web/API/Node/textContent
https://developer.mozilla.org/en-US/docs/Web/API/Element/classList
https://codepen.io/murilocamargos/pen/yLVRBEy?editors=1010

We can select the h1 element then set its textContent to

change what is displayed in the h1. (CodePen)

https://codepen.io/murilocamargos/pen/yLVRBEy?editors=1010

Another approach:
Changing the elements

Add elements via DOM

We can create elements dynamically and add them to the

web page via createElement and appendChild:

document.createElement(tag string)

element.appendChild(element);

Technically you can also add elements to the webpage via

innerHTML, but it poses a security risk.

// Try not to use innerHTML like this:

element.innerHTML = '<h1>Hooray!</h1>';

https://developer.mozilla.org/en-US/docs/Web/API/Document/createElement
https://developer.mozilla.org/en-US/docs/Web/API/Node/appendChild
https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML#Security_considerations

Remove elements via DOM

We can also call remove elements from the DOM by calling

the remove() method on the DOM object:

element.remove();

And actually setting the innerHTML of an element to an

empty string is a fine way of removing all children from a

parent node:

// This is fine and poses no security risk.

element.innerHTML = '';

https://developer.mozilla.org/en-US/docs/Web/API/ChildNode/remove
https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML#Notes

CodePen

https://codepen.io/murilocamargos/pen/jOVjEvR

Hmm, the effect is slightly janky though:

The text changes faster than the image loads.

Q: How do we fix this issue?

display: none;

There is yet another super helpful value for display:

display: block;

display: inline;

display: inline-block;

display: flex;

display: none;

display: none; turns off rendering for the element and

all its children. It's treated as if the element were not in the

document at all...

https://developer.mozilla.org/en-US/docs/Web/CSS/display

display: none;

There is yet another super helpful value for display:

display: block;

display: inline;

display: inline-block;

display: flex;

display: none;

display: none; turns off rendering for the element and

all its children. It's treated as if the element were not in the

document at all…
...but the content (such as the images) is still loaded.

https://developer.mozilla.org/en-US/docs/Web/CSS/display

We can add both views to the HTML,

with one view hidden by default…

(CodePen)

https://codepen.io/murilocamargos/pen/XWNxroN?editors=1010

Then we toggle the display state of the containers

by adding/removing the hidden class.

(CodePen)

https://codepen.io/murilocamargos/pen/XWNxroN?editors=1010

Recap

Several strategies for updating HTML elements in JS:

1. Change content of existing HTML elements in page:

- Good for simple text updates

2. Add elements via createElement and appendChild

- Needed if you're adding a variable number of elements

3. Put all "views" in the HTML but set inactive ones to

hidden, then update display state as necessary.

- Good when you know ahead of time what element(s)

you want to display

- Can be used in conjunction with (1) and/or (2)

Case Study: A longer JS example

Example: Tic Tac Toe

Let's try to implement a game of Tic-Tac-Toe.

Tic Tac Toe plan

1. Every time we click on an empty space, change the
empty space in an "X" by adding an image of an "x"
into the empty <div>

2. After our turn, the computer puts an "O" in a random
empty space

3. When there are 3 Xs or 3 Os in a row, declare a winner

CodePen starter code

https://codepen.io/murilocamargos/pen/zYoVxyq

Empty square -> X

First we need to make all div children of #grid
clickable… how do we do that?

Empty square -> X

In changeToX, we need to add an
tag into the clicked element…

How do we do that?

Empty square -> X

Step 1 Complete: CodePen

https://codepen.io/murilocamargos/pen/LYbKEqL

Tic Tac Toe plan

1. Every time we click on an empty space, change the
empty space in an "X" by adding an image of an "x"
into the empty <div>

2. After our turn, the computer puts an "O" in a
random empty space

3. When there are 3 Xs or 3 Os in a row, declare a winner

Aside: Random in JS

Inconveniently, JavaScript only has one* random generator:

Math.random()

- Math.random() returns a random floating point

number between [0, 1) (0 inclusive, 1 exclusive)

To get a random number from 0 inclusive to max exclusive:

Math.floor(Math.random() * max);
(Intuition: It's like a random percentage of max…
so if max is 5, then [0, 0.2) maps to 0, [0.2, 0.4) maps to 1, [0.4, 0.6) maps to 2,
[0.6, 0.8) maps to 3, [0.8, 1) maps to 4)

*aside from crypto libraries

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random

How do we figure out an empty space?

Empty space: DOM approach

Maybe something like:

- For each #grid div

- See if it has an img child

Note that querySelector can also be used on an

element, not just document:

const sectionElement = document.querySelector('section');

// All h1s that are children of sectionElement:

const headers = sectionElement.querySelector('h1');

Anything wrong with this approach?

Don't query UI for state

We're querying the UI state to understand the game state.

This is not a great software engineering technique:

- Couples your "view" and your "model"

- Can lead to hard-to-find bugs:

- What if we later decide to display X's and O's using

background-image instead of an tag?

- Code is also a little hard to read

- What do "img" tags have to do with a free space?

Better to keep track of state separately from UI!

Better(?) approach: Global
Variable
We can instead store the game state in a global variable:

freeBoxes is our array that contains the available boxes

Better(?) approach: Global
Variable

Then we update the freeBoxes state when we add an X...

Better(?) approach: Global
Variable

...And when the computer add an O.

Is that really better?!

What's wrong with that solution?

- Aren't we still coupling UI with state a little bit?

- We are storing references to UI elements in

freeBoxes to track which ones are free...

- Aren't global variables bad?!

- We aren't supposed to create global variables in

other programming contexts...

Is that really better?!

What's wrong with that solution?

- Aren't we still coupling UI with state a little bit?

- We are storing references to UI elements in

freeBoxes to track which ones are free...

- Aren't global variables bad?!

- We aren't supposed to create global variables in

other programming contexts…

(We'll deal with these problems next week)

(Basically we want classes)

Tic Tac Toe plan

1. Every time we click on an empty space, change the
empty space in an "X" by adding an image of an "x"
into the empty <div>

2. After our turn, the computer puts an "O" in a random
empty space

3. When there are 3 Xs or 3 Os in a row, declare a
winner

Distinguishing boxes

The same event
handler is called for

each element.

How do we distinguish
between elements?

Terrible idea: 9 event handlers

Uniquely identifying items

But this idea of
uniquely identifying

squares is a good one!

Solution

Add another state variable, takenBoxes, that maps box

number to who owns the box

Update takenBoxes with the owner each time a space is

assigned.

Find winner by

checking rows, columns

and diagonal spaces

Create a results div and add results to the div

Attach "data" to divs?

Wouldn't it be nicer if we could

operate on numbers instead of

string ids?

But we can't have numeric IDs…

Is there some way to attach

additional "data" to an element?

Data attributes

You can assign special data-* attributes to HTML elements

to give associate additional data with the element.

data-your-name="Your Value"

https://developer.mozilla.org/en-US/docs/Learn/HTML/Howto/Use_data_attributes

Data attributes in JavaScript

You can access your custom-defined data attributes via the

dataset object on the DOM object:

- Dash-separated words turn to camel case, e.g.

data-index-number in HTML is dataset.indexNumber in JS

- Aside: Data attributes are returned as strings, but you can cast them

to Number via parseInt

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/parseInt

Data attributes in CSS

You can also style data attributes in CSS:

[data-variable-name] or

[data-variable-name='value'] or

element[data-variable-name] etc

Understanding the DOM

DOM Nodes

If the DOM is a tree composed of Nodes…

Q: Does that mean a Node in the DOM has child pointers

like the trees?

https://developer.mozilla.org/en-US/docs/Web/API/Node

DOM Nodes

If the DOM is a tree composed of Nodes…

Q: Does that mean a Node in the DOM has child pointers

like the trees?

A: Yes!

https://developer.mozilla.org/en-US/docs/Web/API/Node

Node properties

Property Description

textContent
The text content of a node and its descendants.
(This property is writeable)

childNodes An array of this node's children (empty if a leaf)

parentNode A reference to this node's parent Node

<body>

<h1>My favorites</h1>

<section>

<p>Strawberries</p>

<p>Chocolate</p>

</section>

</body>

What's the parentNode of
<section>?

https://developer.mozilla.org/en-US/docs/Web/API/Node/textContent
https://developer.mozilla.org/en-US/docs/Web/API/Node/childNodes
https://developer.mozilla.org/en-US/docs/Web/API/Node/parentNode

parentNode

<body>

<h1>My favorites</h1>

<section>

<p>Strawberries</p>

<p>Chocolate</p>

</section>

</body>

The parentNode of
<section> is <body>.

What are the childNodes of
<section>?

childNodes

<body>

<h1>My favorites</h1>

<section>

<p>Strawberries</p>

<p>Chocolate</p>

</section>

</body>

???

Why does section
have 5 children, not

2?!

TextNode

In addition to Element nodes, the DOM also contains

Text nodes. All text present in the HTML, including

whitespace, is contained in a text node:

<body>

<h1>My favorites</h1>

<section>

<p>Strawberries</p>

<p>Chocolate</p>

</section>

</body>

https://developer.mozilla.org/en-US/docs/Web/API/Element
https://developer.mozilla.org/en-US/docs/Web/API/Text

TextNode

All text present in the HTML, including whitespace, is

contained in a Text node:

<body>

<h1>My favorites</h1>

<section>

<p>Strawberries</p>

<p>Chocolate</p>

</section>

</body>

https://developer.mozilla.org/en-US/docs/Web/API/Text

DOM and Text nodes

The DOM is composed of Nodes, and there are several

subtypes of Node.

- Element: HTML (or SVG) elements in the DOM

- Text: Text content in the DOM, including whitespace

- Text nodes cannot contain children (are always

leafs)

- Comment: HTML comments

- (more)

The type of a node is stored in the nodeType property

https://developer.mozilla.org/en-US/docs/Web/API/Node
https://developer.mozilla.org/en-US/docs/Web/API/Node
https://developer.mozilla.org/en-US/docs/Web/API/Element
https://developer.mozilla.org/en-US/docs/Web/API/Text
https://developer.mozilla.org/en-US/docs/Web/API/Text
https://developer.mozilla.org/en-US/docs/Web/API/comment
https://developer.mozilla.org/en-US/docs/Web/API/Node/nodeType
https://developer.mozilla.org/en-US/docs/Web/API/Node/nodeType

Traversing the DOM

Q: How would we print out all nodes in the DOM?

Traversing the DOM

Q: How would we print out all nodes in the DOM?

A: Recursively walk the DOM tree:

function walkTree(root, level) {

 if (root.nodeType === Node.TEXT_NODE) {

 console.log(level + 'text:' + root.textContent);

 } else {

 console.log(level + root.nodeName);

 }

 for (const child of root.childNodes) {

 walkTree(child, level + " ");

 }

}

walkTree(document.querySelector('html'), "");

What's the point?

- If we have document.querySelector that lets us get

elements in the DOM…

- And if we can change the HTML as necessary to add

classes/ids/elements/etc to select the right things…

Q: When would we ever want to traverse the DOM?

What's the point?

- If we have document.querySelector that lets us get

elements in the DOM…

- And if we can change the HTML as necessary to add

classes/ids/elements/etc to select the right things…

Q: When would we ever want to traverse the DOM?

A: Pretty much only in browser extensions

or the Web Console

(i.e. manipulating someone else's page)

Browser extensions

- Add-on that extends the functionality of the browser

- A piece of JavaScript that is injected into the webpage

before or after it has loaded

Hacks and Mischief

Example: Folha’s Paywall

https://www1.folha.uol.com.br/mercado/2021/03/setor-produtivo-diz-que-aumen
to-forte-de-juros-pode-ser-precipitado.shtml

https://www1.folha.uol.com.br/mercado/2021/03/setor-produtivo-diz-que-aumento-forte-de-juros-pode-ser-precipitado.shtml
https://www1.folha.uol.com.br/mercado/2021/03/setor-produtivo-diz-que-aumento-forte-de-juros-pode-ser-precipitado.shtml

