
Interactive Web
Programming

1st semester of 2021

Murilo Camargos
(murilo.filho@fgv.br)

Heavily based on Victoria Kirst slides

https://web.stanford.edu/class/archive/cs/cs193x/cs193x.1176/lectures/

Today's schedule

Today
- JS Events in detail
- Other JavaScript events

Thursday
- CSS Animations
- Mobile events
- Intro to ES6 classes

JavaScript events in detail

Events in JavaScript

If you put a "click" event listener on an element, what

happens if the user clicks a child of that element?

Events in JavaScript

Example: If you click on the , will the

toggleVisibility function fire? (CodePen)

https://codepen.io/bee-arcade/pen/3b819624949d7469021c0d3886d2b101?editors=0010

Events in JavaScript

Yes, a click event set on an element will fire if you click on a

child of that element

If you put a click
event listener on
the div, and the
user clicks on the

img inside that div,
then the event

listener will still fire.

(CodePen)

https://codepen.io/bee-arcade/pen/3b819624949d7469021c0d3886d2b101?editors=0010

Event.currentTarget vs target

You can access either the element clicked or the element to
which the event listener was attached:

- event.target: the element that was clicked /

"dispatched the event" (might be a child of the target)

- event.currentTarget: the element that the original

event handler was attached to

https://developer.mozilla.org/en-US/docs/Web/API/Event/target
https://developer.mozilla.org/en-US/docs/Web/API/Event/currentTarget

Multiple event listeners

What if you have event listeners set on both an element

and a child of that element?

- Do both fire?

- Which fires first?

(CodePen)

https://codepen.io/bee-arcade/pen/a068bd62a8981f08de0a468aafe5e44f?editors=0011

Event bubbling

- Both events fire if you click the inner element

- By default, the event listener on the inner-most

element fires first

div id="inner"

div id="outer"

This event ordering (inner-most to outer-most) is known as

bubbling. (CodePen)

https://codepen.io/bee-arcade/pen/a068bd62a8981f08de0a468aafe5e44f?editors=0011

Event bubbling

- Both events fire if you click the inner element

- By default, the event listener on the inner-most

element fires first

div id="inner"

div id="outer"

This event ordering (inner-most to outer-most) is known as

bubbling. (CodePen)

https://codepen.io/bee-arcade/pen/a068bd62a8981f08de0a468aafe5e44f?editors=0011

stopPropagation()

We can stop the event from bubbling up the chain of

ancestors by using event.stopPropagation():

See default behavior vs with stopPropagation

https://codepen.io/bee-arcade/pen/a068bd62a8981f08de0a468aafe5e44f?editors=0011
https://codepen.io/bee-arcade/pen/f26724e378ae61ebbb8e46c2745dd329?editors=0011

Event capturing

To make event propagation go the opposite direction, add a
3rd parameter to addEventListener:

event.addEventListener(
 'click', onClick, { capture: true});

This event ordering (outer-most to inner-most) is known as

capturing. (CodePen)

div id="inner"

div id="outer"

https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener#Parameters
https://codepen.io/bee-arcade/pen/f26724e378ae61ebbb8e46c2745dd329?editors=1111

Event capturing

To make event propagation go the opposite direction, add a
3rd parameter to addEventListener:

event.addEventListener(
 'click', onClick, { capture: true});

This event ordering (outer-most to inner-most) is known as

capturing. (CodePen)

div id="inner"

div id="outer"

https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener#Parameters
https://codepen.io/bee-arcade/pen/f26724e378ae61ebbb8e46c2745dd329?editors=1111

stopPropagation()

We can also use event.stopPropagation() in

capture-order:

See default behavior vs with stopPropagation

https://codepen.io/bee-arcade/pen/f26724e378ae61ebbb8e46c2745dd329?editors=1111
https://codepen.io/bee-arcade/pen/f26724e378ae61ebbb8e46c2745dd329?editors=0011

Some technical details...

Behind the scenes

Technically, the browser will go through both a capture
phase and a bubbling phase when an event occurs:

If we click on the div
with id="inner"...

Behind the scenes

The browser creates the target's"propagation path," or
the list of its ancestors up to root (w3c)
(target meaning the thing you clicked; not necessarily the element the event

listener is attached to)

htmlhtml

div id="inner"

html

body

div id="outer"

https://www.w3.org/TR/DOM-Level-3-Events/#dom-event-architecture

"Capture phase"

The browser begins at the top of the propagation path and
invokes any event listeners that have capture="true", in

path order until it gets to the target. This is the "capture
phase" (w3c)

html

body

div id="outer"

div id="inner"

https://www.w3.org/TR/DOM-Level-3-Events/#dom-event-architecture

"Target phase"

Then the browser invokes any event listener that was set on
the target itself. This is the "target phase" (w3c)

div id="inner"

htmlhtmlhtml

body

div id="outer"

https://www.w3.org/TR/DOM-Level-3-Events/#dom-event-architecture

"Bubble phase"

If the event type has bubbles=true (see click, e.g.) the
browser goes back up the propagation path in reverse

order and invokes any event listener that wasn't supposed
to fire on capture. This is the "bubble phase" (w3c)

div id="inner"

htmlhtmlhtml

body

div id="outer"

https://developer.mozilla.org/en-US/docs/Web/Events/click#General_info
https://www.w3.org/TR/DOM-Level-3-Events/#dom-event-architecture

stopPropagation()

Therefore stopPropagation() actually stops the rest of
the 3-phase dispatch from executing

div id="inner"

htmlhtmlhtml

body

div id="outer"

In Practice

Don't worry about:

- You never need to use capture order - you can always

use bubbling

- You don't really need to know how the browser goes

through "capture phase", "target phase", then "bubble

phase"

Do worry about:

- You do need to understand bubbling, though

- stopPropagation() also comes in handy

Other JavaScript events

Other JavaScript events?

We've been doing a ton of JavaScript examples that involve

click events…

Aren't there other types of events?

Other JavaScript events?

We've been doing a ton of JavaScript examples that involve

click events…

Aren't there other types of events?

- Of course!

- Today we'll talk about:

- Keyboard events

- Pointer / mobile events

Example: Photo Album

We're going to add a few features to this photo album:

Example: Photo Album

We're going to add a few features to this photo album:

Starter code walkthrough:
index.html

script.js
style.css

https://murilocamargos.github.io/iwp/pages/photos-start/index.html
https://murilocamargos.github.io/iwp/pages/photos-start/script.js
https://murilocamargos.github.io/iwp/pages/photos-start/style.css

General setup

index.html contains both "screens":

- The album view: Thumbnails of every photo

- The "modal" view: A single photo against a

semi-transparent black background

- Hidden by default

https://murilocamargos.github.io/iwp/pages/photos-start/index.html
https://en.wikipedia.org/wiki/Modal_window

CSS: Album

style.css: The album view CSS is pretty straightforward:

https://murilocamargos.github.io/iwp/pages/photos-start/style.css

CSS: Modal

Modal view is a little more involved, but all stuff we've learned:

CSS: Modal image

Image sizes are constrained to the height and width of the

parent, #modal-view (whose height and width are set to the

size of the viewport)

CSS: Hidden modal

Even though both the album view and modal view are in the HTML,

the model view is set to display: none; so it does not show up.

Global List of Photos

constants.js: There is a global array with the list of string

photo sources called PHOTO_LIST.

https://murilocamargos.github.io/iwp/pages/photos-start/constants.js

Photo thumbnails

script.js: We populate the initial album view by looping over

PHOTO_LIST and appending s to the #album-view.

https://murilocamargos.github.io/iwp/pages/photos-start/script.js

Clicking a photo

When the user clicks a thumbnail:

- We create another tag with the same src

- We append this new to the #modal-view

- We unhide the #modal-view

Positioning the modal

We'll add another line of JavaScript to anchor our modal dialog to

the top of the viewport, not the top of the screen:

modalView.style.top = window.pageYOffset + 'px';

(See window.pageYOffset mdn. It is the same as window.scrollY.)

https://developer.mozilla.org/en-US/docs/Web/API/Window/pageyoffset
https://developer.mozilla.org/en-US/docs/Web/API/Window/scrolly

Aside: style attribute

Every HTMLElement has a style attribute that lets you set a

style directly on the element:

element.style.top = window.pageYOffset + 'px';

Generally you should not use the style property, as adding

and removing classes via classList is a better way to

change the style of an element via JavaScript

But when we are setting a CSS property based on JavaScript

values, we must set the style attribute directly.

https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/style
https://developer.mozilla.org/en-US/docs/Web/API/Element/classList

No scroll on page

And we'll also set body { overflow: hidden; } as a way to

disable scroll on the page.

Closing the modal dialog

When the user clicks the modal view:

- We hide the modal view again

- We enable scroll on the page again

- We clear the image we appended to it by setting

innerHTML = '';

Adding keyboard navigation

Navigating photos

Let's add some keyboard events to navigate between

photos in the Modal View:

- Left arrow: Show the "i - 1"th picture

- Right arrow: Show the "i + 1"th picture

- Escape key: Close dialog

How do we listen
to keyboard events?

Keyboard events

You can listen for keyboard events by adding the event

listener to document:

document.addEventListener('keyup', onKeyUp);

Event name Description

keydown
Fires when any key is pressed. Continues
firing if you hold down the key. (mdn)

keypress
Fires when any character key is pressed, such
as a letter or number. Continues firing if you
hold down the key. (mdn)

keyup Fires when you stop pressing a key. (mdn)

https://developer.mozilla.org/en-US/docs/Web/Events/keydown
https://developer.mozilla.org/en-US/docs/Web/Events/keypress
https://developer.mozilla.org/en-US/docs/Web/Events/keyup

KeyboardEvent.key

function onKeyUp(event) {

 console.log('onKeyUp:' + event.key);

}

document.addEventListener('keyup', onKeyUp);

Functions listening to a key-related event receive a

parameter of KeyboardEvent type.

The KeyboardEvent object has a key property, which

stores the string value of the key, such as "Escape"

- List of key values

https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent
https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/key
https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/key/Key_Values

Useful key values

Example: key-events.html

Key string value Description

"Escape" The Escape key

"ArrowRight" The right arrow key

"ArrowLeft" The left arrow key

https://murilocamargos.github.io/iwp/pages/key-events/index.html

Let's finish the feature!
Final solution!

https://murilocamargos.github.io/iwp/pages/photos-key-events

Mobile?

Keyboard events work well on desktop, but keyboard

navigation doesn't work well for mobile.

On your phone, you can usually navigate

photo albums using gestures:

- Left swipe reveals the next photo

- Right swipe reveals the previous photo

Next Previous

Mobile?

Keyboard events work well on desktop, but keyboard

navigation doesn't work well for mobile.

On your phone, you can usually navigate

photo albums using gestures:

- Left swipe reveals the next photo

- Right swipe reveals the previous photo

Next Previous

How do we implement the
swipe gesture on the web?

Custom swipe events

- There are no gesture events in JavaScript (yet).

- That means there is no "Left Swipe" or "Right Swipe"

event we can listen to. (Note that drag does not do what we want,

nor does it work on mobile)

To get this behavior, we must implement it ourselves.

To do this, it's helpful to learn about a few more JS events:

- MouseEvent

- TouchEvent

- PointerEvent

https://developer.mozilla.org/en-US/docs/Web/Events/drag

MouseEvent

Event name Description

click Fired when you click and release (mdn)

mousedown Fired when you click down (mdn)

mouseup Fired when when you release from clicking (mdn)

mousemove Fired repeatedly as your mouse moves (mdn)

*mousemove only works on desktop, since there's no

concept of a mouse on mobile.

https://developer.mozilla.org/en-US/docs/Web/API/MouseEvent
https://developer.mozilla.org/en-US/docs/Web/Events/click
https://developer.mozilla.org/en-US/docs/Web/Events/mousedown
https://developer.mozilla.org/en-US/docs/Web/Events/mouseup
https://developer.mozilla.org/en-US/docs/Web/Events/mousemove

TouchEvent

Event name Description

touchstart Fired when you touch the screen (mdn)

touchend
Fired when you lift your finger off the screen
(mdn)

touchmove
Fired repeatedly while you drag your finger on
the screen (mdn)

touchcancel
Fired when a touch point is "disrupted" (e.g. if the
browser isn't totally sure what happened) (mdn)

*touchmove only works on mobile (example)

https://developer.mozilla.org/en-US/docs/Web/API/TouchEvent
https://developer.mozilla.org/en-US/docs/Web/Events/touchstart
https://developer.mozilla.org/en-US/docs/Web/Events/touchend
https://developer.mozilla.org/en-US/docs/Web/Events/touchmove
https://developer.mozilla.org/en-US/docs/Web/Events/touchcancel
https://mobilehtml5.org/ts/?id=11

clientX and clientY

function onClick(event) {

 console.log('x' + event.clientX);

 console.log('y' + event.clientY);

}

element.addEventListener('click', onClick);

MouseEvents have a clientX and clientY :

- clientX: x-axis position relative to the left edge of the

browser viewport

- clientY: y-axis position relative to the top edge of the

browser viewport

Implementing drag

Drag Me!

When a user clicks down/touches
an element…

Implementing drag

Drag Me!

Take note of the starting position.

originX = 100;

Drag Me!

Implementing drag

Then on mousemove / touchmove, make
note of the new mouse position

originX = 100;
newX = 150;

Drag Me! Drag Me!

Implementing drag

Move the element by the difference
between the old and new positions.

originX = 100;
newX = 150;

Drag Me!

Implementing drag

Then on release...

Drag Me!

Implementing drag

… stop listening to mousemove /
touchmove.

Dragging on mobile and desktop

Wouldn't it be nice if we didn't have to listen to different

events for mobile and desktop?

PointerEvent

PointerEvent: "pointer" events that work the same with

for both mouse and touch

- Not to be confused with pointer-events CSS

property (completely unrelated)

- Note: In this case, Mozilla's documentation on

PointerEvent is not great.

- A Google blog post on PointerEvent

PointerEvent inherits from MouseEvent, and therefore

has clientX and clientY

https://developer.mozilla.org/en-US/docs/Web/API/PointerEvent
https://developer.mozilla.org/en-US/docs/Web/CSS/pointer-events?v=example
https://developers.google.com/web/updates/2016/10/pointer-events

PointerEvent

Event name Description

pointerdown
Fired when a "pointer becomes active" (touch
screen or click mouse down) (mdn)

pointerup Fired when a pointer is no longer active (mdn)

pointermove
Fired repeatedly while the pointer moves
(mouse move or touch drag) (mdn)

pointercancel Fired when a pointer is "interrupted" (mdn)

*pointermove works on mobile and desktop!

With a good coverage, but...

https://w3c.github.io/pointerevents/
https://developer.mozilla.org/en-US/docs/Web/Events/pointerdown
https://developer.mozilla.org/en-US/docs/Web/Events/pointerup
https://developer.mozilla.org/en-US/docs/Web/Events/pointermove
https://developer.mozilla.org/en-US/docs/Web/Events/pointercancel
https://caniuse.com/pointer

Our first controversial feature!

PointerEvent is not implemented on all browsers yet:

- Firefox implementation is a good one.

- Chrome implementation have some bugs.

- Safari used to oppose to this API… since 2012.

Argh!!! Does this mean we can't use it?

https://lists.webkit.org/pipermail/webkit-dev/2012-December/023050.html

Polyfill library

A polyfill library is code that implements support for

browsers that do not natively implement a web API.

Luckily there is a polyfill library for PointerEvent:

https://github.com/jquery/PEP

https://en.wikipedia.org/wiki/Polyfill
https://github.com/jquery/PEP

PointerEvent Polyfill

To use the PEP polyfill library, we add this script tag to

our HTML:

And we'll add need to add touch-action="none" to the

area where we want PointerEvents to be recognized*:

*Technically what this is doing is it is telling the browser that we do not want the default touch
behavior for children of this element, i.e. on a mobile phone, we don't want to recognize the usual
"pinch to zoom" type of events because we will be intercepting them via PointerEvent. This is normally
a CSS property, but the limitations of the polyfill library requires this to be an HTML attribute instead.

<script src="https://code.jquery.com/pep/0.4.1/pep.js"></script>

https://github.com/jquery/PEP
https://developer.mozilla.org/en-US/docs/Web/CSS/touch-action?v=example
https://github.com/jquery/PEP#touch-action

Moving an element

We are going to use the transform CSS property to move

the element we are dragging from its original position:

Drag Me! Drag Me!

originX = 100;
newX = 150;
delta = newX - originX;

element.style.transform = 'translateX(' + delta + 'px)';

https://developer.mozilla.org/en-US/docs/Web/CSS/transform?v=example

transform

transform is a strange but powerful CSS property that

allow you to translate, rotate, scale, or skew an element.

transform: translate(x, y)
Moves element relative to its natural
position by x and y

transform: translateX(x)
Moves element relative to its natural
position horizontally by x

transform: translateY(y)
Moves element relative to its natural
position vertically by y

transform: rotate(deg) Rotates the element clockwise by deg

transform: rotate(10deg)
translate(5px, 10px);

Rotates an element 10 degrees clockwise,
moves it 5px down, 10px right

Examples

https://developer.mozilla.org/en-US/docs/Web/CSS/transform?v=example
https://codepen.io/bee-arcade/pen/196d0c2483e15da3f2a888a199569fa6

translate vs position

Can't you use relative or absolute positioning to get

the same effect as translate? What's the difference?

- translate is much faster

- translate is optimized for animations

See comparison (article):

- Absolute positioning (click "10 more macbooks")

- transform: translate (click "10 more macbooks")

https://www.paulirish.com/2012/why-moving-elements-with-translate-is-better-than-posabs-topleft/
http://codepen.io/paulirish/pen/nkwKs
http://codepen.io/paulirish/pen/LsxyF

Finally, let's code!

preventDefault()

On desktop, there's a default behavior for dragging an

image, which we need to disable with

event.preventDefault():

https://developer.mozilla.org/en-US/docs/Web/API/Event/preventDefault

setPointerCapture()

To listen to pointer events that occur when the pointer goes

offscreen, call setPointerCapture on the target you

want to keep tracking:

https://developer.mozilla.org/en-US/docs/Web/API/Element/setPointerCapture

style attribute

Every HTMLElement also has a style attribute that lets

you set a style directly on the element:

element.style.transform =

 'translateX(' + value + ')';

Generally you should not use the style property, as

adding and removing classes via classList is a better

way to change the style of an element via JavaScript

But when we are dynamically calculating the value of a CSS

property, we have to use the style attribute.

https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/style
https://developer.mozilla.org/en-US/docs/Web/API/Element/classList

style attribute

The style attribute has higher precedence than any CSS

property.

To undo a style set via the style attribute, you can set it to

the empty string:

element.style.transform = '';

Now the element will be styled according to any rules in the

CSS file(s).

How to smooth these
transitions?

Next time:
CSS Animations!

