
Interactive Web
Programming

1st semester of 2021

Murilo Camargos
(murilo.filho@fgv.br)

Heavily based on Victoria Kirst slides

https://web.stanford.edu/class/archive/cs/cs193x/cs193x.1176/lectures/

Today
- Mobile events
- Simple CSS animations
- Classes and objects in JavaScript
- this keyword and bind

Next week:
- Custom events
- this keyword and bind
- First-class functions
- Callbacks and functional programming

Today's schedule

Custom swipe events

- There are no gesture events in JavaScript (yet).

- That means there is no "Left Swipe" or "Right Swipe"

event we can listen to. (Note that drag does not do what we want,

nor does it work on mobile)

To get this behavior, we must implement it ourselves.

Next Previous

https://developer.mozilla.org/en-US/docs/Web/Events/drag

transform

transform is a strange but powerful CSS property that

allow you to translate, rotate, scale, or skew an element.

transform: translate(x, y)
Moves element relative to its natural
position by x and y

transform: translateX(x)
Moves element relative to its natural
position horizontally by x

transform: translateY(y)
Moves element relative to its natural
position vertically by y

transform: rotate(deg) Rotates the element clockwise by deg

transform: rotate(10deg)
translate(5px, 10px);

Rotates an element 10 degrees clockwise,
moves it 5px down, 10px right

Examples

https://developer.mozilla.org/en-US/docs/Web/CSS/transform?v=example
https://codepen.io/bee-arcade/pen/196d0c2483e15da3f2a888a199569fa6

translate vs position

Can't you use relative or absolute positioning to get

the same effect as translate? What's the difference?

- translate is much faster

- translate is optimized for animations

See comparison (article):

- Absolute positioning (click "10 more macbooks")

- transform: translate (click "10 more macbooks")

https://www.paulirish.com/2012/why-moving-elements-with-translate-is-better-than-posabs-topleft/
http://codepen.io/paulirish/pen/nkwKs
http://codepen.io/paulirish/pen/LsxyF

style attribute

The style attribute has higher precedence than any CSS

property.

To undo a style set via the style attribute, you can set it to

the empty string:

element.style.transform = '';

Now the element will be styled according to any rules in the

CSS file(s).

Softening the edges

This is mostly a perception issue. We can make the UI feel a

little smoother if we added some animations.

- The image should slide in from the left if we are going

to the previous picture

- The image should slide in from the right if we are going

to the next picture

Next Previous

CSS animations

CSS animations syntax

@keyframes animation-name {

 from {

 CSS styles

 }

 to {

 CSS styles

 }

}

Then set the following CSS property:

animation: animation-name duration;

Examples

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://codepen.io/bee-arcade/pen/ddaaddc32bf917f58075b7518d22d687?editors=0110

Example: Fade in

CSS animations events

You can listen to animation events (mdn):

- animationstart: fires at the beginning of the animation

- animationend: fires at the end of the animation

const image = document.querySelector('img');
image.addEventListener('animationstart', onStart);
image.addEventListener('animationend', onEnd);

image.classList.add('fade-grow');

CodePen example

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations#Using_animation_events
https://codepen.io/bee-arcade/pen/f544bb4e5ce727834fa2a831111479ae?editors=1111

CSS animations

There are all kinds of customizations (mdn):

- Set multiple keyframes

- Set keyframes by percentage

- Make animations repeat

- Make animations alternate

- Change the timing function

Also note that not all CSS is animatable: see list

Fancy CodePen example
(credit CSS tricks -- check out their article for more details)

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations#Using_animation_events
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_animated_properties
http://codepen.io/bee-arcade/pen/MmppdK
https://css-tricks.com/almanac/properties/a/animation/

CSS transitions

You can also set a CSS transition on an element, which

controls the animation speed of a changing CSS property

(mdn)

transition: Ns;

CodePen example

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Transitions/Using_CSS_transitions
https://codepen.io/bee-arcade/pen/b0e436e7ad8b0b3caa994b0980516797?editors=1111

Finished result:
photo-mobile-finished.html

https://murilocamargos.github.io/iwp/pages/photos-touch-events/index.html

Classes in JavaScript

Amateur JavaScript

So far the JavaScript code we've been

writing has looked like this:

- Mostly all in one file

- All global functions

- Global variables to save state

between events

It would be nice to write code in a

modular way...

ES6 classes

We can define classes in JavaScript using a syntax that is

similar to Java or C++:

class ClassName {

 constructor(params) {
 ...
 }

 methodName() {
 ...
 }

 methodName() {
 ...
 }
}

These are often called "ES6
classes" or "ES2015
classes" because they were
introduced in the
EcmaScript 6 standard, the
2015 release

- Recall that EcmaScript is the
standard; JavaScript is an
implementation of the
EcmaScript standard

Wait a minute...

Wasn't JavaScript created in 1995?

And classes were introduced… 20 years later in 2015?

Q: Was it seriously not possible to create

classes in JavaScript before 2015?!

Objects in JavaScript

In JavaScript, there are several ways to create blueprints for

objects. Two broad approaches:

1. Functional
a. This approach has existed since the creation of the JavaScript

b. Weird syntax for people used to languages like Java, C++, Python

c. Doesn't quite behave the same way as objects in Java, C++, Python

2. Classical
a. This is the approach that just got added to the language in 2015

b. Actually just "syntactic sugar" over the functional objects in

JavaScript, so still a little weird

c. But syntax is much more approachable

https://en.wikipedia.org/wiki/Syntactic_sugar

Objects in JavaScript

In JavaScript, there are several ways to create blueprints for

objects. Two broad approaches:

1. Functional
a. This approach has existed since the creation of the JavaScript

b. Weird syntax for people used to languages like Java, C++, Python

c. Doesn't quite behave the same way as objects in Java, C++, Python

2. Classical
a. This is the approach that just got added to the language in 2015

b. Actually just "syntactic sugar" over the functional objects in

JavaScript, so still a little weird

c. But syntax is much more approachable

This approach is quite controversial.

https://en.wikipedia.org/wiki/Syntactic_sugar

Class controversy

"There is one thing I am certain is a bad part, a

very terribly bad part, and that is the new class

syntax [in JavaScript]... [T]he people who are

using class will go to their graves never

knowing how miserable they were." (source)

-- Douglas Crockford, author of JavaScript: The Good Parts;

prominent speaker on JavaScript; member of TC39 (committee

that makes ES decisions)

https://www.youtube.com/watch?v=rhV6hlL_wMc&feature=youtu.be&t=950
http://tc39wiki.calculist.org/about/people/

Functional approach: next
week!
Today:

- We will check out ES6 classes.

Next week:

- We will explore "functional JavaScript," allowing us to

understand a way to create object factories without

classes.

In this class:

- We will use ES6 classes because the syntax is

significantly simpler.

Back to classes!

Public methods

class ClassName {

 constructor(params) {
 ...
 }

 methodName() {
 ...
 }

 methodName() {
 ...
 }
}

constructor is optional.

Parameters for the constructor

and methods are defined in

the same they are for global

functions.

You do not use the function

keyword to define methods.

Public methods

class ClassName {

 constructor(params) {
 ...
 }

 methodOne() {
 this.methodTwo();
 }

 methodTwo() {
 ...
 }
}

Within the class, you must

always refer to other methods

in the class with the this.

prefix.

Public methods

class ClassName {

 constructor(params) {
 ...
 }

 methodName() {
 ...
 }

 methodName() {
 ...
 }
}

All methods are public, and

you cannot specify private

methods… yet.

Public methods

class ClassName {

 constructor(params) {
 ...
 }

 methodName() {
 ...
 }

 methodName() {
 ...
 }
}

As far as I can tell, private

methods aren't in the

language only because they

are still figuring out the spec

for it.

It is stage 3 already!

https://github.com/tc39/proposal-private-methods
https://tc39.es/process-document/

Public fields

class ClassName {

 constructor(params) {
 this.fieldName = fieldValue;
 this.fieldName = fieldValue;
 }

 methodName() {
 this.fieldName = fieldValue;
 }
}

Define public fields by setting this.fieldName in the

constructor… or in any other function.
(This is slightly hacky underneath the covers and there is a draft to add

public fields properly to ES.)

https://github.com/tc39/proposal-class-fields

Public fields

class ClassName {

 constructor(params) {
 this.someField = someParam;
 }

 methodName() {
 const someValue = this.someField;
 }
}

Within the class, you must always refer to fields with the

this. prefix.

Public fields

class ClassName {

 constructor(params) {
 this.fieldName = fieldValue;
 this.fieldName = fieldValue;
 }

 methodName() {
 this.fieldName = fieldValue;
 }
}

You cannot define private fields… yet.
(Again, there are plans to add add private fields to ES once the spec is

finalized.)

https://github.com/tc39/proposal-private-fields

Instantiation

Create new objects using the new keyword:

class SomeClass {

 ...

 someMethod() { … }

}

const x = new SomeClass();

const y = new SomeClass();

y.someMethod();

Why classes?

Why are we even doing this?

Why do we need to use classes when web programming?

Why can't we just keep doing things the way we've been

doing things, with global functions and global variables?

Why classes?

A: All kinds of reasons

- For a sufficiently small task, globals variables, functions,

etc. are fine

- But for a larger website, your code will be hard to

understand and easy to break if you do not organize it

- Using classes and object-oriented design is the most

common strategy for organizing code

E.g. in the global scope, it's hard to know at a variable called "name" would be

referring to, and any function could accidentally write to it.

- But when defined in a Student class, it's inherently clearer what "name"

means, and it's harder to accidentally write that value

Organizing code

Well-engineered software is well-organized software:

- Software engineering is all about knowing

1. What to change

2. Where to change it

- You can read an existing codebase better if it is

well-organized

- "Why do I need to read a codebase?" Because you

need to modify the codebase to add features and fix

bugs

Other problems with globals

Having a bunch of loose variables in the global scope is

asking for trouble

- Much easier to hack

- Can access via extension or Web Console

- Can override behaviors

- Global scope gets polluted

- What if you have two functions with the same

name? One definition is overridden without error

- Very easy to modify the wrong state variable

All these things are much easier to avoid with classes

Example: Present

Let's create a Present class inspired by our present example

from last week.

Solution

http://codepen.io/bee-arcade/pen/db0b3223fd87ed06051aa1f2abf5ec63?editors=1010
https://codepen.io/murilocamargos/project/editor/XJOMdw

How to design classes

You may be wondering:

- How do I decide what classes to write?

- How do I decide what methods to add to my class?

Disclaimer

This is not a software engineering class, and this is not an

object-oriented design class.

As such, we will not grade your OO design skills.

However, this also means we won't spend too much time

explaining how to break down your app into well-composed

objects.

(It takes practice and experience to get good at this.)

One general strategy

"Component-based" approach: Use classes to add

functionality to HTML elements ("components")

Each component:

- Has exactly one container element / root element

- Handles attaching/removing event listeners

- Can own references to child components / child

elements

(Similar strategy to ReactJS, Custom Elements, many other

libraries/frameworks/APIs before them)

Container element

One pattern:

<div id="present-container"></div>

const element =

 document.querySelector('#present-container');

const present = new Present(element);

// Immediately renders the present

Container element

A similar pattern:

<div id="present-container"></div>

const element =

 document.querySelector('#present-container');

const present = new Present();

// Renders with explicit call

present.renderTo(element);

Web: Almost total freedom

Unlike most app platforms (i.e. Android or iOS), you have

almost total freedom over exactly how to organize your

code

Pros:

- Lots of control!

Cons:

- Lots and lots and lots of decisions to make

Web: Almost total freedom

Unlike most app platforms (i.e. Android or iOS), you have

almost total freedom over exactly how to organize your

code

Pros:

- Lots of control!

Cons:

- Lots and lots and lots of decisions to make

- This is why Web Frameworks are so common: A web

framework just make a bunch of software engineer

decisions for you ahead of time (+provides starter code)

Don't forget this

If the event handler function you are passing to

addEventListener is a method in a class, you must pass

"this.functionName"

"Private" with _

A somewhat common JavaScript coding convention is to

add an underscore to the beginning or end of private

method names:

_openPresent() {

 ...

}

I'll be doing this in this class for clarity, but note that it's

frowned upon by some.

https://github.com/airbnb/javascript#naming--leading-underscore

Solution: Present

CodePen finished

https://codepen.io/murilocamargos/project/editor/XJOMdw

this in event handler

Right now we access the image we create in the

constructor in _openPresent via

event.currentTarget.

this in event handler

What if we make the image a field and access it

_openPresent via this.image instead of

event.currentTarget?

this in event handler

Error message!

CodePen

What's going on?

https://codepen.io/bee-arcade/project/editor/AmgrWZ/

JavaScript this

The this keyword in JavaScript is dynamically assigned, or

in other words: this means different things in different

contexts (mdn list)

- In our constructor, this refers to the instance

- When called in an event handler, this refers to… the

element that the event handler was attached to (mdn).

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this#As_a_DOM_event_handler

this in event handler

That means this refers to the element, not the

instance variable of the class...

...which is why we get this error message.

Solution: bind

To make this always refer to the instance object for a

method in the class (i.e. to get this to behave as you'd expect), you

can add the following line of code in the constructor:

this.methodName = this.methodName.bind(this);

Solution: bind

Now this in the _openPresent method refers to the

instance object (CodePen):

Moral of the story:

Don't forget to bind()

event listeners in your

constructor!!

https://codepen.io/bee-arcade/project/editor/ZBEqmD/

One more time:

Don't forget to bind()
event listeners in your

constructor!!

Communicating
between classes

Multiple classes

Let's say that we have multiple presents now (CodePen):

https://codepen.io/bee-arcade/project/editor/XaxgOZ/

Multiple classes

And we have implemented this with two classes:

- App: Represents the entire page

- Present: Represents a single present

App

Present

Has a list of
Presents

PresentPresentPresentPresent

CodePen

https://codepen.io/bee-arcade/project/editor/XaxgOZ/

Communicating btwn classes

What if we want to change the title when all present have

been opened? (CodePen)

https://codepen.io/bee-arcade/project/editor/DvzqmD/

Communication btwn classes

Communicating from App → Present is easy, since App

has a list of the Present objects.

App

Present

Has a list of
Presents

PresentPresentPresentPresent

App can just call methods on
Present:

present.doWhatever();

Communication btwn classes

However, communicating Present → App is not as easy,

because Presents do not have a reference to App

App

Present

Has a list of
Presents

PresentPresentPresentPresent

Communicating btwn classes

You have three general approaches:

1. Add a reference to App in Photo

This is poor software engineering, though we will allow it on

the homework because this is not an OO design class

2. Fire a custom event

OK (don't forget to bind)

3. Add onOpened "callback function" to Present

Best option (don't forget to bind)

Terrible style: Presents own
App
A naive fix is to just give Present a reference to App in its

constructor: CodePen

App

Present

Has a list of
Presents

PresentPresentPresentPresent

(Please don't

do this.)
Has an App

https://codepen.io/bee-arcade/project/editor/DdEqJZ/

Terrible style: Presents own
App

- Logically doesn't make

sense: a Present doesn't

have an App

- Gives Present way too

much access to App

- Especially bad in JS with

no private fields/

methods yet

App

Present

Has a list of
Presents

PresentPresentPresentPresent

Has an App

This is the easiest workaround, but it's terrible software

engineering.

Custom events

Custom Events

You can listen to and dispatch Custom Events to

communicate between classes (mdn):

const event = new CustomEvent(

 eventNameString, optionalParameterObject);

element.addEventListener(eventNameString);

element.dispatchEvent(eventNameString);

However, CustomEvent can only be listened to /

dispatched on HTML elements, and not on arbitrary class

instances.

https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Creating_and_triggering_events

Custom Events: Present
example
Let's have the App listen for the 'present-open' event...

App

PresentPresentPresentPresentPresent

Has a list of
Presents

Each present fires
'present-open'
when clicked

App listens for 'present-open'
When present-open has fired for each
present, change the title.

CodePen attempt

https://codepen.io/bee-arcade/project/editor/DWBKqA/

this in event handler

Our first attempt at solution results in errors again!

(CodePen attempt)

https://codepen.io/bee-arcade/project/editor/DWBKqA/

Solution: bind

To make this always refer to the instance object for a

method in the class (i.e. to get this to behave as you'd expect), you

can add the following line of code in the constructor:

this.methodName = this.methodName.bind(this);

CodePen solution

https://codepen.io/bee-arcade/project/editor/AQPekX/

First-class functions

Recall: addEventListener

Over the last few weeks, we've been using functions as a

parameter to addEventListener:

image.addEventListener(

 'pointerdown', onDragStart);

image.addEventListener(

 'click', this._openPresent);

First-class functions

JavaScript is a language that supports first-class functions,

i.e. functions are treated like variables of type Function:

- Can be passed as parameters

- Can be saved in variables

- Can be defined without a name / identifier

- Also called an anonymous function

- Also called a lambda function

- Also called a function literal value

https://en.wikipedia.org/wiki/First-class_function

Function variables

You can declare a function in several ways:

function myFunction(params) {

}

const myFunction = function(params) {

};

const myFunction = (params) => {

};

Function variables

function myFunction(params) {

}

const myFunction = function(params) {

};

const myFunction = (params) => {

};

Functions are invoked in the same way, regardless of how

they were declared:

myFunction();

Simple, contrived example

CodePen

https://codepen.io/bee-arcade/pen/cff88343de4655069e157f094cccf247?editors=0011

A real example: Callbacks

Another way we can communicate between classes is

through callback functions:

- Callback: A function that's passed as a parameter to

another function, usually in response to something.

https://en.wikipedia.org/wiki/Callback_(computer_programming)

Callback: Present example

Let's have Presents communicate with App via callback

parameter: (CodePen attempt)

App

PresentPresentPresentPresentPresent

Has a list of
Presents

Each Present saves an
onOpenCallback parameter
in the constructor
When the present is opened,
fire the callback

App has _onPresentOpened method
When App is constructing Presents, pass its
this._onPresentOpened method as parameter
to Present constructor

https://codepen.io/bee-arcade/project/editor/XErMkA/

this in event handler

Say, it's another error in our event handler...

Solution: bind

Unless explicitly bound, "this" refers to the object that

owns the method being called.

To make this always refer to the instance object for a

method in the class (i.e. to get this to behave as you'd expect), you

can add the following line of code in the constructor:

this.methodName = this.methodName.bind(this);

CodePen solution

https://codepen.io/bee-arcade/project/editor/XqGzeD/

Object-oriented photo album

Let's look at an object-oriented version of the photo album:

CodePen

Album

ModalScreen

ModalPhoto

ThumbnailThumbnailThumbnailThumbnailThumbnail

Has a list of
Thumbnails

Has a ModalScreen

Has a ModalPhoto

https://codepen.io/bee-arcade/project/editor/AbJmLA/#

More next time!

