
Interactive Web
Programming

1st semester of 2021

Murilo Camargos
(murilo.filho@fgv.br)

Heavily based on Victoria Kirst slides

https://web.stanford.edu/class/archive/cs/cs193x/cs193x.1176/lectures/

Schedule

Today:

- More custom events

- this and bind() revisited

- First-class functions

Tuesday (April 13):

- Asynchronous JavaScript

- fetch

- Promises

Announcements:

- HW3 is out. Due to April 9.

- HW 1, 2 and 3 will compose the A1 score.

A quick note on HW2

A quick note on HW2

DOM manipulation:

- Use document.createElement(elementNameStr) to create

HTML nodes.

- A container can be any HTML element that contains one or more

HTML elements or text nodes.

- Use containerNode.appendChild(anotherNode) to append an

HTML node to another HTML node (semantically seen as a container).

- Find elements previously added to the DOM using

document.querySelector or document.querySelectorAll: the

first one returns a Node, while the other returns a list of Nodes. Be

aware of that!

A quick note on HW2

Event listeners:

- Use node.addEventListener(eventNameStr, functionVar)

to add an event listener to an HTML node.

- Do not call the functionVariable

node.addEventListener(eventNameStr, functionVar()).

- Use node.removeEventListener(eventNameStr,

functionVar) to remove an event listener from an HTML node.

- Be aware of how your browser downloads and executes JS files!!!

- Hint: for the select box, take a look at the “change” event:

https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/cha

nge_event

https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/change_event
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/change_event

A quick note on HW2

General stuff:

- Always commit your work on git, even if it doesn’t work yet or is

incomplete.

- I’ll grade everything you’ve done!

On the deadlines:

- If you turn HW1 until April 12, you can get up to 40% of the grade.

- If you turn HW2 until April 12, you can get up to 70% of the grade.

- April 12 will be the last day for the first block of homework to compose

A1 grade: HW1, HW2, and HW3.

A quick review
of ES6 classes

Example: Buttons

We want to:

- Fill the <div id="menu"></div> with buttons A, B, and C

- Update the <h1> with the button that was clicked

- Live example

https://codepen.io/bee-arcade/live/b0ae765cc6ccf3187c03afda2b2e085c

First step: Create a Button class and create three

Buttons. (CodePen)

https://codepen.io/bee-arcade/pen/713c9d676251dd8f43b13ca8cf2df160?editors=1010

Click handler for Button

Let's make it so that every time we click a button, we print

out which button was clicked in the console. (Live)

https://codepen.io/bee-arcade/live/3635971ec4c5a8caa97d262922e5bc89

Starting with this definition of Button...

An initial attempt might look like this. (CodePen)

https://codepen.io/bee-arcade/pen/8d2f166e69166dc9af1051f64437c959?editors=1010

An initial attempt might look like this. (CodePen)

https://codepen.io/bee-arcade/pen/8d2f166e69166dc9af1051f64437c959?editors=1010

But when we run it, that gives us "clicked:

undefined" (CodePen) Why?

https://codepen.io/bee-arcade/pen/8d2f166e69166dc9af1051f64437c959?editors=1010

That's because the value of this in onClick is not

the Button object; it is the <button> element to

which we've attached the onClick event handler.

this in JavaScript

this in the constructor

In the constructor of a class,

this refers to the new object

that is being created.

That's the same meaning as

this in Java or C++.

class Point {

 constructor(x, y) {

 this.x = x;

 this.y = y;

 }

}

this in the constructor

Here's roughly the

equivalent code in

Java. this refers to

the new object that is

being created.

// Java

public class Point {

 public Point(int x, int y) {

 this.x = x;

 this.y = y;

 }

 public int x;

 public int y;

}

this in Java

In Java, this always refers to the new instance being

created, no matter what method you're calling it from, or how

that method is invoked.

// Java

public class Point {

 ...

 String toString() {

 return this.x + ", " + this.y;

 }

}

this in JavaScript

class Point {

 ...

 toString() {

 return this.x + ", " + this.y;

 }

}

But in JavaScript, this can have a different meaning if used

outside of the constructor, depending on the context in which

the function is called.

this in JavaScript

 toString() {

 return this.x + ", " + this.y;

 }

In JavaScript, this is:

- A implicit parameter that is passed to every JavaScript

function, including functions not defined in a class!

- The value of the this parameter changes depending on

how it is called.

this in addEventListener

function onClick() {

 console.log('Clicked!');

 console.log(this);

}

const button = document.querySelector('button');

button.addEventListener('click', onClick);

When used in an event handler, this is set to the element to

which that the event was added. (mdn / CodePen / live)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this#As_a_DOM_event_handler
https://codepen.io/bee-arcade/pen/cafeec100be0b575b9c078bc4df5657c?editors=1111
https://codepen.io/bee-arcade/live/cafeec100be0b575b9c078bc4df5657c

It'd be nice if we could set the value of "this" in onClick

to be the Button object, like it is in the constructor.

...

"Bind" the value of this

That is what this line of code does:

"Hey, use the current value of this in onClick"
(And the current value of this is the new object, since we're in the constructor)

CodePen / Live

https://codepen.io/bee-arcade/pen/3635971ec4c5a8caa97d262922e5bc89
https://codepen.io/bee-arcade/live/3635971ec4c5a8caa97d262922e5bc89

bind in classes

constructor() {

 const someValue = this;

 this.methodName = this.methodName.bind(someValue);

}

This is saying:

- Make a copy of methodName, which will be the exact same as

methodName except this in methodName is always set to the

someValue

- The value of someValue is this to bind(), which is the value

of the new object since we are in the constructor

bind in classes

constructor() {

 this.methodName = this.methodName.bind(this);

}

And of course, you don't need the intermediate someValue

variable.

CodePen / Live

https://codepen.io/bee-arcade/pen/3635971ec4c5a8caa97d262922e5bc89
https://codepen.io/bee-arcade/live/3635971ec4c5a8caa97d262922e5bc89

One more time...

this in the constructor

this in the constructor refers to the new object you are

creating.

constructor(x, y) {

 this.x = x;

 this.y = y;

}

this in a function

this in a function that is not a constructor has a different value,

depending on how the function is called.

onClick() {

 console.log(this.x);

 console.log(this.u);

}

- When invoked as a response to an event, the this in

onClick will be Event.targetElement, or the

element onto which the onClick event handler was

attached.

What were we
trying to do again?

Example: Buttons

We want to:

- Fill the <div id="menu"></div> with buttons A, B, and C

- Update the <h1> with the button that was clicked

- Live example

https://codepen.io/bee-arcade/live/b0ae765cc6ccf3187c03afda2b2e085c

(Contrived) OO example

For practice, we'll write this using 2 classes:

Menu:

- Has an array of Buttons

- Also updates the <h1> with what was

clicked

Button:

- Notifies Menu when clicked, so that

Menu can update the <h1>

Menu

PresentPresentButton

Has a list of
Buttons

Partial solution: We create a Menu class, which

creates the Buttons (CodePen)

https://codepen.io/bee-arcade/pen/dbd02b9a9301acb969af0fa749168994

Then we create the Menu (and the menu creates the

Buttons) when the page loads. (CodePen)

https://codepen.io/bee-arcade/pen/dbd02b9a9301acb969af0fa749168994

Update Menu when Button clicked

Our current Menu doesn't do much.

Update Menu when Button clicked

We want the Menu to update the <h1> when one of the

Buttons are clicked. How do we do this?

Communicating upstream

Menu

Button

Button is the thing that
knows it was clicked...

Has a reference to

Communicating upstream

Menu

Button

But Menu is the thing that
can update the header.

Has a reference to

Communicating upstream

Menu

Button

It needs to be possible for a
Button to tell the Menu that it

has been clicked.

Has a reference to
"I was clicked!"

One strategy for doing this:
Custom events

Custom Events

You can listen to and dispatch Custom Events to

communicate between classes (mdn):

const event = new CustomEvent(

 eventNameString, optionalParameterObject);

element.addEventListener(eventNameString,

functionName);

element.dispatchEvent(eventNameString);

https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Creating_and_triggering_events

Custom Events on document

CustomEvent can only be listened to / dispatched on HTML

elements, and not on arbitrary class instances.

Therefore we are going to be adding/dispatching events on

the document object, so that events can be globally

listened to/dispatched.

document.addEventListener(eventNameString,

functionName);

document.dispatchEvent(eventNameString);

Define a custom event

We'll define a custom event called 'button-click':

Menu will listen for the event:

document.addEventListener(

 'button-click', this.showButtonClicked);

Button will dispatch the event:

document.dispatchEvent(

 new CustomEvent('button-click'));

A first attempt: We should listen for the custom

'button-click' event in Menu.

A first attempt: Listen for the custom 'button-click'

event in Menu. Note the call to bind! (CodePen)

https://codepen.io/bee-arcade/pen/2b5ab50df0f693ad81e6816f190439e8?editors=0010

A first attempt: Listen for the custom 'button-click'

event in Menu. Note the call to bind! (CodePen)

https://codepen.io/bee-arcade/pen/2b5ab50df0f693ad81e6816f190439e8?editors=0010

Then we want to dispatch the 'button-click' event in

the onClick event handler in Button.

Dispatch the 'button-click' event in the onClick

event handler in Button (CodePen).

https://codepen.io/bee-arcade/pen/2b5ab50df0f693ad81e6816f190439e8?editors=0010

Dispatch the 'button-click' event in the onClick

event handler in Button (CodePen).

https://codepen.io/bee-arcade/pen/2b5ab50df0f693ad81e6816f190439e8?editors=0010

When we try it out, the event dispatching seems to

work… but our output is "null was clicked"

(CodePen / Live)

https://codepen.io/bee-arcade/pen/2b5ab50df0f693ad81e6816f190439e8?editors=0010
https://codepen.io/bee-arcade/live/2b5ab50df0f693ad81e6816f190439e8

The problem is we are adding custom event listeners

to document, meaning event.currentTarget is

going to be document, and not <button>

Communicating upstream

Menu

Button

Menu knows some button was
clicked… How do we tell the
Menu which button was

clicked?

Has a reference to
"Button B was
clicked!"

CustomEvent parameters

You can add a parameter to your CustomEvent:

- Create an object with a detail property

- The value of this detail property can be whatever

you'd like.

https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Creating_and_triggering_events#Adding_custom_data_%E2%80%93_CustomEvent()

CustomEvent parameters

You can add a parameter to your CustomEvent:

- The event handler for your CustomEvent will be able

to access this detail property via Event.detail

Finished CodePen

https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Creating_and_triggering_events#Adding_custom_data_%E2%80%93_CustomEvent()
https://codepen.io/bee-arcade/pen/b0ae765cc6ccf3187c03afda2b2e085c?editors=0010

First-class functions

Recall: addEventListener

Over the last few weeks, we've been using functions as a

parameter to addEventListener:

image.addEventListener(

 'pointerdown', onDragStart);

image.addEventListener(

 'click', this._openPresent);

Q: How does this actually work?

First-class functions

Functions in JavaScript are objects.

- They can be saved in variables

- They can be passed as parameters

- They have properties, like other objects

- They can be defined without an identifier

(This is also called having first-class functions, i.e. functions in JavaScript are

"first-class" because they are treated like any other variable/object.)

https://en.wikipedia.org/wiki/First-class_function

First-class functions

Functions in JavaScript are objects.

- They can be saved in variables

- They can be passed as parameters

- They have properties, like other objects

- They can be defined without an identifier

(This is also called having first-class functions, i.e. functions in JavaScript are

"first-class" because they are treated like any other variable/object.)

???
Isn't there a fundamental difference
between "code" and "data"?

https://en.wikipedia.org/wiki/First-class_function

Let's take it all the way
back to first principles...

Back to the veeeeery basics

What is code?

- A list of instructions your computer can execute

- Each line of code is a statement

What is a function?

- A labeled group of statements

- The statements in a function are executed when the

function is invoked

What is a variable?

- A labeled piece of data

Recall: Objects in JS

Objects in JavaScript are sets of property-value pairs:

const bear = {

 name: 'Ice Bear',

 hobbies: ['knitting', 'cooking', 'dancing']

};

- Like any other value, Objects can be saved in variables.

- Objects can be passed as parameters to functions

Back to the veeeeery basics

What is code?

- A list of instructions your computer can execute

- Each line of code is a statement

What is a function?

- A labeled group of statements

- The statements in a function are executed when the

function is invoked

What is a variable?

- A labeled piece of data

What could it mean for a
function to be an object,

i.e. a kind of data?

Function variables

You can declare a function in several ways:

function myFunction(params) {

}

const myFunction = function(params) {

};

const myFunction = (params) => {

};

Function variables

function myFunction(params) {

}

const myFunction = function(params) {

};

const myFunction = (params) => {

};

Functions are invoked in the same way, regardless of how

they were declared:

myFunction();

const x = 15;

let y = true;

const greeting = function() {

 console.log('hello, world');

}

"A function in JavaScript is an object of type Function"

"A function in JavaScript is an object of type Function"

In the interpreter's memory:

const x = 15;

let y = true;

const greeting = function() {

 console.log('hello, world');

}

"A function in JavaScript is an object of type Function"

In the interpreter's memory:

15x

const x = 15;

let y = true;

const greeting = function() {

 console.log('hello, world');

}

"A function in JavaScript is an object of type Function"

In the interpreter's memory:

15x

trueyconst x = 15;

let y = true;

const greeting = function() {

 console.log('hello, world');

}

In the interpreter's memory:

15x

truey

...greeting

"A function in JavaScript is an object of type Function"

What this really means:

- When you declare a function, there is an object of type

Function that gets created alongside the labeled block of

executable code.

const x = 15;

let y = true;

const greeting = function() {

 console.log('hello, world');

}

Function properties

const greeting = function() {

 console.log('hello, world');

}

console.log(greeting.name);

console.log(greeting.toString());

When you declare a function, you create an object of type
Function, which has properties like:
- name
- toString

CodePen

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/name
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/name
https://codepen.io/bee-arcade/pen/41df7fa89a60756f1b213bcedce3eadf?editors=1011

Function properties

const greeting = function() {

 console.log('hello, world');

}

greeting.call();

Function objects also have a call method, which
invokes the underlying executable code associated with
this function object.

CodePen

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call
https://codepen.io/bee-arcade/pen/613eb792582d38024f679ecbacc463d4?editors=1011

Function properties

const greeting = function() {

 console.log('hello, world');

}

greeting.call();

greeting();

() is an operation on the Function object (spec)
- When you use the () operator on a Function object, it

is calling the object's call() method, which in turn
executes the function's underlying code

http://www.ecma-international.org/ecma-262/6.0/#sec-function-calls

Code vs Functions

Important distinction:

- Function, the executable code

- A group of instructions to the computer

- Function, the object

- A JavaScript object, i.e. a set of property-value pairs

- Function objects have executable code associated

with them

- This executable code can be invoked by

- functionName(); or

- functionName.call();

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function

Note: Function is special

Only Function objects have executable code associated

with them.

- Regular JS objects cannot be invoked

- Regular JS objects cannot be given executable code

- I.e. you can't make a regular JS object into a callable

function

const bear = {

 name: 'Ice Bear',

 hobbies: ['knitting', 'cooking', 'dancing']

};

bear(); // error!

Function Objects vs Objects

But you can give your object Function properties and

then invoke those properties.

function sayHello() {

 console.log('Ice Bear says hello');

}

const bear = {

 name: 'Ice Bear',

 hobbies: ['knitting', 'cooking', 'dancing'],

 greeting: sayHello

};

bear.greeting(); CodePen

https://codepen.io/bee-arcade/pen/107883c371bffa2d73ba1299becf1d38?editors=1011

Function Objects vs Objects

The greeting property is an object of Function type.

function sayHello() {

 console.log('Ice Bear says hello');

}

const bear = {

 name: 'Ice Bear',

 hobbies: ['knitting', 'cooking', 'dancing'],

 greeting: sayHello

};

bear.greeting(); CodePen

https://codepen.io/bee-arcade/pen/107883c371bffa2d73ba1299becf1d38?editors=1011

Why do we have Function objects?!

Callbacks

Function objects really come in handy for event-driven

programming!

function onDragStart(event) {

 ...

}

dragon.addEventListener('pointerdown', onDragStart);

Because every function declaration creates a Function

object, we can pass Functions as parameters to other

functions.

Simple, contrived example

CodePen

https://codepen.io/bee-arcade/pen/cff88343de4655069e157f094cccf247?editors=0011

CodePen

This example is really

contrived!

Aside from

addEventListener,

when would you ever

want to pass a

Function as a

parameter?

https://codepen.io/bee-arcade/pen/cff88343de4655069e157f094cccf247?editors=0011

A real example: Callbacks

Another way we can communicate between classes is

through callback functions:

- Callback: A function that's passed as a parameter to

another function, usually in response to something.

https://en.wikipedia.org/wiki/Callback_(computer_programming)

Callback: Present example

Let's have Presents communicate with App via callback

parameter: (CodePen attempt)

App

PresentPresentPresentPresentPresent

Has a list of
Presents

Each Present saves an
onOpenCallback parameter
in the constructor
When the present is opened,
fire the callback

App has _onPresentOpened method
When App is constructing Presents, pass its
this._onPresentOpened method as parameter
to Present constructor

https://codepen.io/bee-arcade/project/editor/XErMkA/

this in event handler

Say, it's another error in our event handler...

this in a method

function sayHello() {

 console.log(this.name + ' says hello');

}

const bear = {

 name: 'Ice Bear',

 hobbies: ['knitting', 'cooking', 'dancing'],

 greeting: sayHello

};

bear.greeting(); CodePen

When we use this in a function that is not being invoked
by an event handler, this is set to the object on which the
method is called.

https://codepen.io/bee-arcade/pen/b0c1f3c17814ba31d99c1e72a46b46e2?editors=1011

this in a method

function sayHello() {

 console.log(this.name + ' says hello');

}

const bear = {

 name: 'Ice Bear',

 hobbies: ['knitting', 'cooking', 'dancing'],

 greeting: sayHello

};

bear.greeting();

What is the output of the code above?

(CodePen)

https://codepen.io/bee-arcade/pen/b0c1f3c17814ba31d99c1e72a46b46e2?editors=1011

What is the output of the code above, if we click the button?

(CodePen)

https://codepen.io/bee-arcade/pen/d214bea753753099d49774157b98a71b?editors=0011

When called as a method, the value of this is the object on
which the method was called.

But when called from an event handler, this is the DOM
object to which the event was attached.

Since <button> doesn't have a characterName
property, we see "undefined says hello"

bind, revisited

- this is a parameter to passed to every function in

JavaScript.

- JavaScript assigns this to be a different value depending

on how it is used.

- When called as a method, this is the object on

which the method was called

- When called from an event handler, this is the

DOM element on which the event handler was

attached

bind, revisited

someFunction.bind(valueOfThis);

The bind() method:

- Returns a new function that is a copy of someFunction

- But in this new function, this is always set to

valueOfThis, no matter how the function is invoked

bind in classes

constructor() {

 const someValue = this;

 this.methodName = this.methodName.bind(someValue);

}

This is saying:

- Make a copy of methodName, which will be the exact same as

methodName except this in methodName is always set to the

someValue

- The value of someValue is this to bind(), which is the value

of the new object since we are in the constructor

bind in classes

constructor() {

 this.methodName = this.methodName.bind(this);

}

And of course, you don't need the intermediate someValue

variable.

Callback: Present example

We can fix this error message by binding the method:

CodePen solution

https://codepen.io/bee-arcade/project/editor/XqGzeD/

