
Interactive Web
Programming

1st semester of 2021

Murilo Camargos
(murilo.filho@fgv.br)

Heavily based on Victoria Kirst slides

https://web.stanford.edu/class/archive/cs/cs193x/cs193x.1176/lectures/

Schedule

Today:

- More on callbacks

- Functional JavaScript

- Currying

- Closures

- Anonymous functions

Next:

- Promises

- Fetch API

A quick note on HW2

A quick note on HW2

General stuff:

- I sent a feedback for each one of you on sunday at 19h30.

- If you didn’t receive anything from me yesterday, please, send me an

email ASAP (murilo.filho@fgv.br).

- Some aspects were not very clear:

- You should use CSS techniques to make the page responsive.

- The time counter should not be cleaned when changing a season.

- Some of you lost points on those aspects but don’t worry!

mailto:murilo.filho@fgv.br

A quick note on HW2

On the deadlines:

- If you turn HW1 until April 16, you can get up to 40% of the grade.

- If you turn HW2 until April 16, you can get up to 70% of the grade.

- April 16 will be the last day for the first block of homework to compose

A1 grade: HW1, HW2, and HW3.

ATTENTION:

- If you take all feedback from yesterday and fix everything by April 16,

you can still earn a 10!!!

- For that you MUST fix everything you can, answer the google forms and

send me an email confirming you want a new evaluation.

Callbacks

A real example: Callbacks

Another way we can communicate between classes is

through callback functions:

- Callback: A function that's passed as a parameter to

another function, usually in response to something.

https://en.wikipedia.org/wiki/Callback_(computer_programming)

Button

Recall: Button example

Menu:

- Has an array of Buttons

- Also updates the <h1> with what was

clicked

Button:

- Notifies Menu when clicked, so that

Menu can update the <h1>

Solution with Custom Events

Button

Menu

Button

Has a list of
Buttons

"Button B was
clicked!"

https://codepen.io/bee-arcade/pen/b0ae765cc6ccf3187c03afda2b2e085c?editors=0010

Custom Events: Menu listens for a 'button-clicked' event

Custom Events: Button dispatches a 'button-clicked' event,

with information on what was clicked

How would we implement
the same thing with callbacks?

Callback solution

Button

Button:

- Takes a function parameter

(callback) in the constructor

- Saves this parameter as a field

- Invokes the saved callback function

when clicked

Menu:

- Passes showButtonClicked

method as parameter in Button

constructor Button

Menu

Button

Has a list of
Buttons

"Button B was
clicked!"

Callback Sender Strategy: Add an onClickedCallback

function parameter to the Button constructor, save it in

field, and invoke it onClick.

Button constructor takes an onClickedCallback function

parameter, which is saves in a field of the same name

Invoke the saved callback function when clicked.

You can send whatever parameter(s) you'd like

in the callback function.

Callback Receiver Strategy: Add a method to be called when a

button is clicked and pass it to the constructor of Button

Add the showButtonClicked method,

which should be called when the button is clicked.

Add the showButtonClicked method,

which should be called when the button is clicked.

Note that we still have to bind showButtonClicked, even though

it won't be invoked as a result of a DOM event.

Pass the showButtonClicked method

to the constructor of Button

Button example solution

Solution with Callbacks

https://codepen.io/bee-arcade/pen/78575ded5baba8aa15642037c298d9b4?editors=0010

Q: Why did we have to bind showButtonClick?

this in a method

this in different contexts

this in a constructor:

- this is set to the new object being created

this in a function firing in response to a DOM event:

- this is set to the DOM element to which the event

handler was attached

this being called as a method on an object:

- this is set to the that is calling the method, or the object

on which the method is called.

(all values of this)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this

When Button is constructed, showButtonClicked is

 being saved in Button's onClickedCallback field

Button is the object that ultimately calls the

showButtonClicked function.

Without the call to bind, this in showButtonClicked is

Button, and this will result in a JS error when we try to refer to

this.statusBar.textContent (CodePen)

https://codepen.io/bee-arcade/pen/9c20554addd7310e3824157ece6c6939?editors=0011

But with the call to bind, this in showButtonClicked is the

Menu, which is the behavior we want. (CodePen)

https://codepen.io/bee-arcade/pen/78575ded5baba8aa15642037c298d9b4?editors=0010

One more look at bind

Objects in JS

Objects in JavaScript are sets of property-value pairs:

const bear = {

 name: 'Ice Bear',

 hobbies: ['knitting', 'cooking', 'dancing']

};

Classes in JS

Classes in JavaScript produce objects through new.
(CodePen)

https://codepen.io/bee-arcade/pen/94307fe3e3d61a5dd25f48b8ec97d2b0

Classes in JS

Q: Are the objects created from classes also sets of
property-value pairs?

Classes and objects

{

 playlistName: 'More Life',

 songs: [],

 addSong: function(songName) {

 this.songs.push(songName);

 }

}

A: Yes.

The playlist

object created by

the constructor

essentially* looks

like this:

Technically addSong (and the constructor function) is defined in the prototype of the playlist object, but we haven't
talked about prototypes and probably won't talk about prototypes until the end of the quarter.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain

Classes and objects

{

 playlistName: 'More Life',

 songs: [],

 addSong: function(songName) {

 this.songs.push(songName);

 }

}

In JavaScript, a

method of an

object is just a

property whose

value is of

Function type.

Classes and objects

{

 playlistName: 'More Life',

 songs: [],

 addSong: function(songName) {

 this.songs.push(songName);

 }

}

In JavaScript, a

method of an

object is just a

property whose

value is of

Function type.

And just like any other Object property, the value of

that method can be changed.

Rewriting a function

Q: What is the

output of this code?

CodePen

https://codepen.io/bee-arcade/pen/39beeb57876201ad67992f4d3b925672?editors=0011

Rewriting a function

When would you ever want to rewrite the
definition of a method?!

bind in classes

constructor() {

 const someValue = this;

 this.onClick = this.onClick.bind(someValue);

}

The code in purple is saying:

- Make a copy of onClick, which will be the exact same as

onClick except this in onClick is always set to the

someValue

bind in classes

constructor() {

 const someValue = this;

 this.onClick = this.onClick.bind(someValue);

}

The code in purple is rewriting the onClick property of the object:

- Assign the value of the onClick property: set it to the new

function returned by the call to bind

Practical Functional JavaScript

Functional programming

We are going to cover some topics that are fundamental to

a programming paradigm called functional programming.

Pure functional programming is pretty extreme:

- Everything in your code is either a function or an

expression

- There are no statements

- There is no state:

- No variables, fields, objects, etc

Comes from the idea of treating a computer program as a

mathematical function

https://en.wikipedia.org/wiki/Functional_programming

Functional programming

This is a code snippet from Scheme, a functional

programming language:

Everything is a function or the result of a function call.

https://en.wikipedia.org/wiki/Scheme_(programming_language)

Practical FP in JS

Most software is not built using a pure functional

programming paradigm, so we won't be covering it.

But there are some ideas from functional programming that

are immensely useful:

- First-class functions (functions as objects)

- Currying

- Closures

- Anonymous functions / lambdas / function literals

Why FP matters

Why should we learn about this other programming

paradigm?

- There are ideas you can express more clearly and concisely with

functional programming.

- There are problems you can solve much more easily with

functional programming.

- (very practically) You will see JavaScript code in the wild that uses

functional programing and the code will be indecipherable if you

don't learn it.

- (very practically) Functional programming is trendy and so useful

that C++ and Java added support for a few critical FP concepts

(lambdas/closures) in the past few years.

First-class functions

Functions in JavaScript are objects.

- They can be saved in variables

- They can be passed as parameters

- They have properties, like other objects

- They can be defined without an identifier

(This is also called having first-class functions, i.e. functions in JavaScript are

"first-class" because they are treated like any other variable/object.)

https://en.wikipedia.org/wiki/First-class_function

Recall: Functions as parameters

We know that we can pass functions as parameters to other

functions. We've already done this multiple times:

- The event handler parameter to addEventListener

- As a parameter for a constructor of a new object

Array objects also have several methods that take

functions as parameters.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

Example: findIndex

list.findIndex(callback, thisArg):

Returns the index of an element.

callback is a function with the following parameters:

- element: The current element being processed.

- index: The index of the current element being

processed in the array.

- array: the array findIndex was called upon.

callback is called for every element in the array, and returns

true if found, false otherwise.

thisArg is the value of this in callback

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/findIndex?v=example

Remove with for-loop

Let's say that we added a removeSong method to

Playlist (CodePen)

https://codepen.io/bee-arcade/pen/42641da06f957b07be94d852844d8233?editors=0011

Remove with findIndex

How would we rewrite this using findIndex?

Starter CodePen

https://codepen.io/bee-arcade/pen/d6c83d0580ae4a23f0db8da16c4a95d7?editors=0011

General approach

We want to do something like this...

General approach

But the problem is that we want to pass songName into the

doesSongTitleMatch function somehow.

General approach

But the problem is that we want to pass songName into the

doesSongTitleMatch function somehow.

Clunky solution: field

We could save the song parameter as a field,

which the doesSongTitleMatch method can access…

(CodePen)

https://codepen.io/bee-arcade/pen/99750cc142539526659d895e031dbc8d?editors=0011

Clunky solution: field

But then you have this weird removeSongNameParameter

field that is only valid in between these method calls.

(CodePen)

https://codepen.io/bee-arcade/pen/99750cc142539526659d895e031dbc8d?editors=0011

Add a parameter?

We really want to pass the songName value from

removeSong to doesSongTitleMatch …

Add a parameter?

But the callback for findIndex expects 3 specific

parameters, and we can't somehow add songName.

One solution: new function

We can do this (CodePen):

https://codepen.io/bee-arcade/pen/633ab2ce45a0ab198396beaa1c346dba

One solution: new function

We can do this (CodePen):

??????

https://codepen.io/bee-arcade/pen/633ab2ce45a0ab198396beaa1c346dba

Creating functions within functions

Functions that create functions

In JavaScript, we can create functions from within functions
(CodePen).

https://codepen.io/bee-arcade/pen/6dc404bcb87ecc4eebca5405a9c9f269?editors=0011

Functions that create functions

In JavaScript, we can create functions from within functions
(CodePen).

A function declared within
a function is also known as
a closure.

https://codepen.io/bee-arcade/pen/6dc404bcb87ecc4eebca5405a9c9f269?editors=0011

Scope of closures

Functions declared with
function (or var) have
function scope.

- Can be referenced
anywhere in the
function after
declaration

This example works:

https://codepen.io/bee-arcade/pen/46345776e90be53893df9eb9ae6a07bd?editors=0011

Scope of closures

Functions declared with
function (or var) have
function scope.

- Cannot be referenced
outside the function

This example doesn't
work:

https://codepen.io/bee-arcade/pen/72165567caf5acb78997480f59e315c6?editors=0011
https://codepen.io/bee-arcade/pen/72165567caf5acb78997480f59e315c6?editors=0011

Scope of closures

Functions declared with
function (or var) have
function scope.

- Cannot be referenced
outside the function

This example doesn't
work:

https://codepen.io/bee-arcade/pen/72165567caf5acb78997480f59e315c6?editors=0011
https://codepen.io/bee-arcade/pen/72165567caf5acb78997480f59e315c6?editors=0011

Scope of closures

Functions declared with
const or let have block
scope

- Cannot be referenced
outside of the block.

This example doesn't
work:

https://codepen.io/bee-arcade/pen/10585e8bc4b3ffce0d774cef55c22660?editors=0011
https://codepen.io/bee-arcade/pen/10585e8bc4b3ffce0d774cef55c22660?editors=0011

Functions that return functions

CodePen

In JavaScript, we can return new functions as well.
(We kind of knew this already because bind returns a new function.)

https://codepen.io/bee-arcade/pen/425bc38b821abd46b2228bdc50f80f39?editors=0011

Functions that create functions

CodePen

https://codepen.io/bee-arcade/pen/425bc38b821abd46b2228bdc50f80f39?editors=0011

Closure: an inner function

- When you declare a function inside another function, the inner

function is called a closure.

Closure: an inner function

- Within a closure, you can reference variables that were declared

in the outer function, and those variables will not go away after

the outer function returns.

Functions that create functions

The scope of greeting is only in the makeHelloFunction

function, as well as the scope of name...

Functions that create functions

But the makeHelloFunction function returns a reference to the

function, which is an object, so the function object doesn't go away

Functions that create functions

And the function object keeps a reference to the name parameter, so

that when the created function is called...

Functions that create functions

… we see that the new function returned from

makeHelloFunction still has access to the name variable.

Functions that create functions

The idea of constructing a new function that is "partially

instantiated" with arguments is called currying. (article)

https://www.sitepoint.com/currying-in-functional-javascript/

Anonymous functions

We do not need to give an identifier to functions.

When we define a function without an identifier, we call it

an anonymous function

- Also known as a function literal, or a lambda function

Anonymous functions

We do not need to give an identifier to functions.

When we define a function without an identifier, we call it

an anonymous function

- Also known as a function literal, or a lambda function

CodePen

https://codepen.io/bee-arcade/pen/2807d226d0c18a80bb7ef821571795c8

Back to our Playlist

General approach

We want to do something like this...

General approach

But the problem is that we want to pass songName into the

doesSongTitleMatch function somehow.

Instantiating a function...

We want to create a version of doesSongTitleMatch,

with a value assigned to songName.

Currying

We can do this (CodePen):

https://codepen.io/bee-arcade/pen/633ab2ce45a0ab198396beaa1c346dba

Currying

We've created a function whose signature matches what

findIndex expects.

Currying

We're creating this function within an outer function that

takes the songName.

Currying

This allows us to essentially construct a new

findIndexFunction, with a set songName value.

This is called currying.

Cleaning up removeSong

We can also define the findIndexFunction directly in

removeSong, instead of making a separate function to

create one with the right parameters (CodePen):

https://codepen.io/bee-arcade/pen/587289de95e86e027d2042eaf0873de2

Cleaning up removeSong

We don't need to include the parameters we aren't using:

Cleaning up removeSong

We can define the function directly in the findIndex

parameter instead of saving it in a variable:

Cleaning up removeSong

We can use the arrow function syntax for defining

functions:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Functions#Arrow_functions

Cleaning up removeSong

We can use the concise version of the arrow function:

- You can omit the parentheses if there is only one

parameter

- You can omit the curly braces if there's only one

statement in the function, and it's a return statement

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions#Function_body

removeSong before/after

More Array functions

Function name Description

list.forEach(function)
Executes the provided function once for
each array element. (mdn)

list.filter(function)
Creates a new array with all elements
that pass the test implemented by the
provided function. (mdn)

list.every(function)
Tests whether all elements in the array
pass the test implemented by the
provided function. (mdn)

All Array functions

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach?v=example
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter?v=example
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/every?v=example
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

Gotchas and style notes

Recall: Present example

CodePen

We implemented

a Present class

that had a

separate

_openPresent

method.

https://codepen.io/bee-arcade/pen/0e0afb2709428488efa7b6971a9467ba

What would happen if we defined the click event handler

directly in the call to addEventListener (CodePen)?

https://codepen.io/bee-arcade/pen/566cffbdfaf4161cc0dc167447f1f094

We didn't bind this, so we have a bug:

this is the img instead of the Present object.

Fixed CodePen

https://codepen.io/bee-arcade/pen/3bc05a4d9bfcfd5ef1a0c9c8cee9a129

Fixed CodePen

https://codepen.io/bee-arcade/pen/3bc05a4d9bfcfd5ef1a0c9c8cee9a129

What would happen if we defined the click event handler

like this, with the arrow function instead (CodePen)?

https://codepen.io/bee-arcade/pen/d26124522885b518c06506f3886e986a?editors=0011

This works! Why?!

(CodePen)

https://codepen.io/bee-arcade/pen/d26124522885b518c06506f3886e986a?editors=0011

=> versus function

When you define a function using function syntax:

 const onClick = function() {

 const image = event.currentTarget;

 image.src = this.giftSrc;

 };

this is will be dynamically assigned to a different value

depending on how the function is called, like we've seen

before (unless explicitly bound with bind)

=> versus function

When you define a function using arrow syntax:

 const onClick = event => {

 const image = event.currentTarget;

 image.src = this.giftSrc;

 };

this is bound to the value of this in its enclosing context

Since we've used the arrow function in the constructor, the

this in the enclosing context is the new Present object.

Which is better style?

(A) Explicit event handler

(B) Inline event handler

Callback style

Version A: Explicit event handler

- Pros:

- Easier to read

- More modular

- Scales better to long functions, several event

handlers

- Cons:

- Because all class methods are public, it exposes the

onClick function (which should be private)

Callback style

Version A: Explicit event handler

- Pros:

- Easier to read

- More modular

- Scales better to long functions, several event

handlers

- Cons:

- Because all class methods are public, it exposes the

onClick function (which should be private)

- Need to bind explicitly

Callback style

Version B: Inline event handler

- Pros:

- Does not expose the event handler: function is

privately encapsulated

- Cons:

- Constructor logic has unrelated logic inside of it

- Will get messy with lots of event handlers, long

event handlers

Callback style

Version B: Inline event handler

- Pros:

- Does not expose the event handler: function is

privately encapsulated

- Cons:

- Constructor logic has unrelated logic inside of it

- Will get messy with lots of event handlers, long

event handlers

Some people strongly prefer
this style because of the

encapsulation aspect.

Advanced closures

What's the output of this program? (CodePen)

https://codepen.io/bee-arcade/pen/fdc516bdf3006cf34771fa0b25bab0db?editors=0011

Advanced closures

Closures

Within a closure, you can reference variables that were

declared in the outer function, and those variables will not

go away after the outer function returns.

Closures

The variable is not copied to the inner function; the inner

function has a reference to the variable in the outer scope.

- See this iconic StackOverflow post to learn more

http://stackoverflow.com/questions/111102/how-do-javascript-closures-work

Closures

tl;dr: Be careful with closures! For now, we are not going to

be modifying outer function variables in the closure.

Review: ES6 classes

- ES6 classes mostly work the way you expect

- this in a constructor: refers to the new object being

created

- this outside a constructor: refers to a different value

depending on how the function is called

- In response to a DOM event, this is the element

that the event handler was tied to

- When called in a method, this is the object that

the method is called from

- bind: sets the value of this for a function so it does

not change depending on the context

Review: Functional JavaScript

- Functions in JavaScript are first-class citizens:

- Objects that can be passed as parameters

- Can be created within functions:

- Inner functions are called closures

- Can be created without being saved to a variable

- These are called anonymous functions, or

function literals, or lambdas

- Can be created and returned from functions

- Constructing a new function that references part

of the outer function's parameters is called

currying

