INnteractive Web
Programming

1st semester of 2021

Murilo Camargos
(murilo.filho@fgv.br)

Heavily based on Victoria Kirst slides

https://web.stanford.edu/class/archive/cs/cs193x/cs193x.1176/lectures/

Schedule

Today:
- Fetch
- JSON
- Fetchin an class
- Promises
- Querying REST APIs
- Form submission

Announcements:
- HWA4 is out! Due May 11.

https://murilocamargos.github.io/iwp/homework/4-info-fetch

A quick note on HW3 and Al

General stuff: 10

+
- | sent a feedback for each 9- T
one of you on sunday at a] @
&

19h. Probably went to

SPAM! «(
6 1 &
- If you didn’t receive .
anything from me, please, S
H\;Vl H\;VZ HV'V3 All

send me an email ASAP
(murilo.filho@fgv.br).

mailto:murilo.filho@fgv.br

Loading data from files

Loading data from a file

What if you had a
list of URLs in a
text file that you
wanted to load as
images in your
web page?

https:

//medial.

giphy.

com/media/xNT2CcLjhbIQU/200.gif

https:

//media2.

giphy.

com/media/307btM3VVVNtssGReo/200.qgif

https:

//medial.

giphy.

com/media/13q2uxEzLIE8cWMq4/200.qif

https:

//media?2.

giphy.

com/media/LDwlL3ao061wfHa/200.qgif

https:

//medial.

giphy.

com/media/307TKMt1VVNKHV2PaE/200.qgif

https:

//media3.

giphy.

com/media/DNQFiMJIbbsNmU/200.qgif

https:

//medial.

giphy.

com/media/26FKTsKMKtUSomuNg/200.qgif

https:

//medial.

giphy.

com/media/xThuW5Hf2N8idJHFVS/200.qgif

https

://medial.

giphy.

com/media/X1FfSDOCiyGLC/200.qgif

https:

//media3.

giphy.

com/media/ZaBHSbilLQTmFi/200.qgif

https:

//media3.

giphy.

com/media/JPbZwjMcxJYic/200.qgif

https:

//medial.

giphy.

com/media/FArqgGzk7K014k/200.qgif

https:

//medial.

giphy.

com/media/UFolLN1EyKjlLbi/200.qgif

https:

//medial.

giphy.

com/media/11zXBCAb9soCQM/200.qgif

https:

//media4.

giphy.

com/media/xUPGcHeIeZMmTcDQly/200.qgif

https:

//media2.

giphy.

com/media/apZwW]In0Bvos/200.qgif

https

://media2.

giphy.

com/media/sB4nvt5xIiNiq/200.qgif

https:

//medial.

giphy.

com/media/Y8Bi91C0zXRKkY/200.qgif

https:

//medial.

giphy.

com/media/12wUXim6f8Hhcc/200.qif

https:

//media4.

giphy.

com/media/26gsuVyk5fKB1YAAE/200.qgif

https:

//media3.

giphy.

com/media/12SpMU9sWIvT2nrCo/200.qif

https:

//media2.

giphy.

com/media/kR1vWazNc7972/200.qgif

https:

//media4.

giphy.

com/media/Tv3m2GAA12Re8/200.qgif

https:

//media2.

giphy.

com/media/9nujydsBLz2dq/200.qgif

https

://media3.

giphy.

com/media/AG3910rHgkRLa/200.qgif

Fetch API

Fetch API

fetch(): Function to load resources in JavaScript

fetch(pathToResource)
.then(onResponse)
.then(onResourceReady) ;

onResponse:
e Return response.text() from this function to get

the resource as a string in onResourceReady

onResourceReady:
e Gets the resource as a parameter when it's ready

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Body/text

Fetch API

function onTextReady(text) {
// do something with text

¥

function onResponse(response) {
return response.text();

¥

fetch('images.txt")
.then(onResponse)
.then(onTextReady);

Completed example

function onTextReady(text) {
const urls = text.split('\n');
for (const url of urls) {
const image = document.createElement('img’);
image.src = url;
document.body.append(image);
}
}

function onResponse(response) {
return response.text();

¥

fetch('images.txt")
.then(onResponse)
.then(onTextReady);

Completed example

function onTextReady(text) {
const urls = text.split('\n');
for (const url of urls) {
const image = new Image();
image.src = url;
document.body.append(image);
}
}

function onResponse(response) {
return response.text();

¥

fetch('images.txt")
.then(onResponse)
.then(onTextReady);

Live example

https://murilocamargos.github.io/iwp/pages/fetch-images

fetch() limitations

e You cannot fetch a resource that is hosted on file://
o You must serve your resource over HTTP / HTTPS

X

[w ﬂ Elements Console Sources Network » 02

© top v Filter Info v o 4

® »Fetch API cannot load file:///Users/victoriakir script-complete.js:14
st/cs193x/lectures/17/images—-text/images.txt. URL scheme must be "http"
or "https" for CORS request.

Serve over HI TP

We can run a program to serve our local files over HTTP:

$ python -m http.server
Serving HTTP on :: port 8000 (http://[::]:8000/) ...

This now starts up a server that can load the files in the current
directory over HTTP.

- We can access this server by navigating to:
http://localhost:8000/

http://localhost:8000/

Note: Fetch Polyfill

Fetch is supported on all major browsers

If you need to support older browsers, add a Fetch
Polyfill the way we did with Pointer Events

http://caniuse.com/#search=fetch
https://github.com/github/fetch/blob/master/fetch.js
https://github.com/github/fetch/blob/master/fetch.js
https://github.com/jquery/PEP

JSON

JavaScript Object Notation

JSON: Stands for JavaScript Object Notation
- Created by Douglas Crockford
- Defines a way of serializing JavaScript objects

- to serialize: to turn an object into a string that can
be deserialized

- to deserialize: to turn a serialized string into an
object

JSON.stringify()

We can use the JSON.stringify () function to seralize a
JavaScript object:

const bear = {
name: 'Ice Bear',
hobbies: ['knitting', 'cooking', 'dancing']

}s

const serializedBear = JSON.stringify(bear);
console.log(serializedBear);

CodePen

https://codepen.io/bee-arcade/pen/0e07c135fb367b169c8a5ae84dc504e9?editors=1111

JSON.parse()

We can use the JSON.parse() function to deseralize a
JavaScript object:

const bearString = '{"name":"Ice
Bear", "hobbies":["knitting","cooking", "danci
ng"1}";

const bear = JSON.parse(bearString);
console.log(bear);

CodePen

https://codepen.io/bee-arcade/pen/edebe703d104548ae623a0bb854f441f?editors=1111

Fetch APl and JSON

The Fetch API also has built-in support for JSON:

function onJsonReady(json) {
console.log(json);

} Return
response.json()

function onResponse(response) { instead of

return response.json(); response.text()

} and Fetch will
essentially call

fetch('images.json") JSON.parse() on the

.then(onResponse) response string.

.then(onJsonReady);

Why JSON?

Let's say we had a file that contained a list of albumes.

Each album has:
- Title
- Year
- URL to album image

We want to display each album in chronological order.

Text file?

We could create a text file formatted consistently in some
format that we make up ourselves, e.g.:

The Emancipation Of Mimi
2005
https://i.scdn.co/image/dca82bd9clccae90b09972027a408068f7a4d700

Daydream
1995
https://i.scdn.co/image/0638f0ddf70003cb94b43aa5e4004d85da94199c

E=MC?
2008
https://i.scdn.co/image/bca35d49t6033324d2518656531¢c9a89135c0ea3

Mariah Carey
1990

I 7N oy ™ v vy oo o | 7~ o ~ @ poyeegey @ OO ey g g N PN e pem ey

Text file processing

function onTextReady(text) {

We would have to write const lines = text.split('\n\n');

all this custom file const albums = [];
processing code: for (let i = 0; i < lines.length; i++) {
const infoText = lines[i];
- Must convert const infoStrings = infoText.split('\n"');
numbers from const name = infoStrings[0];

const year infoStrings[1];
const url = infoStrings[2];
albums.push({

name: name,

strings

- If you ever add

another attribute to year: parseInt(year),
the album, we'd url: url
1)
have t.oj.hange our) Live example /
array indices GitHub

https://yayinternet.github.io/lecture17/albums/fetch-text.html
https://github.com/yayinternet/lecture17/blob/master/albums/fetch-text.js

JSON file

It'd be much more convenient to store the file in JSON format:

{
"albums": [
{
"name": "The Emancipation Of Mimi",
"year": 2005,
"url”:

"https://i.scdn.co/image/dca82bd9clccae90b09972027a408068F7a4d700

}s

{
"name": "Daydream",
"year": 1995,
"url”:

"https://i.scdn.co/image/0638f0ddf70003cb94b43aa5e4004d85da94199c¢

}s

f

JSON processing

Since we're using JSON, we function onJsonReady(json) {
don't have to manually const albums = json.albums;
convert the response
strings to a JavaScript
object:

- JavaScript has built-in
support to convert a _
JSON string into a Live example /
JavaScript object. GitHub

https://yayinternet.github.io/lecture17/albums/fetch-json.html
https://github.com/yayinternet/lecture17/blob/master/albums/fetch-json.js

Fetch in a class

Discography page

Let's write a web page that lists the Mariah Carey albums
stored in albums.json and lets us sort the albums: (demo)

Mariah Carey's albums

By year, descending || By year, ascending || By title, alphabetical

https://yayinternet.github.io/lecture17/oo-albums/albums.json
https://codepen.io/bee-arcade/live/1169a5760153ee5f6877a8b6f7c30521

Class dlagram

The class diagram is going to look something like this:

script.js

4

creates\

\ fetches
creates >
App J<_ o
returns

e

albums. json

Album fetch()

2. App calls

fetch() for

1. Script creates App albums.jso albums.json
object. /’Vv/
-~

script.js A -
g { pp }‘

* Synchronous L Album }

|
v Asynchronous

Album fetch()

* Synchronous

; Asynchronous albums.json
/
”

~
script.js { App J‘r “ 3. Fetch request
7 returns the JSON data

as a JavaScript object
4. App creates an

Album object for each
album in the JSON Album }
response

Discography page

Q: How do we begin to implement this??

script.js creates A
7 PP

\ fetches

J* >
returns

creates

e

albums. json

Mariah Carey's albums

By year, descending | By year, ascending By title, alphabetical

Getting started

Suggestion:

Implement the Album class first!
script.js >
7 APp J - The App class will have to use

the Album class, meaning it is
dependent on the Album class.

A - The Album class doesn't have
- any dependencies, so let's
Album } create that first.

Starter

https://codepen.io/bee-arcade/pen/98981953e515d3d07dda1c7409a6ddb1

Milestone 1. Album

. . class Album {
script.)s constructor(containerElement, imageUrl) {
7 // Same as document.createElement('img');
const image = new Image();
~ image.src = imageUrl;
containerElement.append(image);
Album J : ¥

For your first step, just implement the Album class: ignore
App/fetch()/etc for now.

Milestone 1. Album

Modify script.js to create two Albums.

const albumContainer = document.querySelector('#album-container');

const albuml = new Album(
albumContainer,
"https://1i.scdn.co/image/dca82bd9clccae90bd9972027a408068f7a4d700"') ;

const album2 = new Album(
albumContainer,
"https://1i.scdn.co/image/0638f0ddf70003cb94b43aa5e4004d85da94f99c"');

Milestone 1: Album

Milestone 1: CodePen

Mariah Carey's albums

By year, descending | By year, ascending | By title, alphabetical

https://codepen.io/bee-arcade/pen/d7156c2c1196973cadc6422812325ac3?editors=0010

Milestone 2: Print album info

script.jsJ / albums.json
App }‘(

Suggestion: Implement the fetch() next!

- The App class is going to fetch data from albums.json,
then it will create Albums based on that data.

- Let'simplement fetch() first and make sure it works
by printing out the results to the console.

Create a method
loadAlbums () that
calls fetch() like we
did in the previous
examples.

(Note: We don't have to
define a constructor if
we don't want to do in

the constructor.)

class App {
loadAlbums() {

}

}

fetch(JSON_PATH)
.then(this._onResponse)
.then(this._onJsonReady);

_onJsonReady(json) {

}

const albums = json.albums;

// Let's print the albums fetched.

for (const album of albums) {
console.log(album);

}

_onResponse(response) {

}

return response.json();

Milestone 2: Print album info

Modify script.js to create an App and call its
loadAlbums() method.

// script.js
const app = new App();
app . LoadAlbums();

Milestone 2: Print album info

Milestone 2: CodePen

Console | Clear | % |
i

Object {
name: "Rainbow",
url: "https://i.scdn.co/image/a666bcba51a0073ce34d7ad24703f4c45b374eff",
year: 1999

}

Object {
name: “"Charmbracelet"”,
url: "https://i.scdn.co/image/c642f1lac7861c85133a0d4bc8@alebefcad969a7",
year: 2002

}

Object {
name: “"Memoirs Of An Imperfect Angel",
url: "https://i.scdn.co/image/cl5ee84ece3ff03856ce@ec8112e7597b6c9da72",
vear: 2009

https://codepen.io/bee-arcade/pen/c6760ac74e0859f3038c06dc62f115cf?editors=0011

Milestone 3: Create Albums

Now let's connect App and Album:

- The App class is supposed to create Albums based on
the data fetched from the JSON file.

- Since Album and fetch() are working separately, now
let's try making them work together.

— |
script.js { App J<_ L _’ albums. json

N\
i

class App {
loadAlbums() {
fetch(JSON_PATH)
.then(this._onResponse)
.then(this._onJsonReady);

}

_onJsonReady(json) {
const albums = json.albums;
// Let's print the albums fetched.
for (const album of albums) {

console.log(album);

}
}

_onResponse(response) {
return response.json();

}
}

class App {
loadAlbums() {
fetch(JSON_PATH)
.then(this._onResponse)
.then(this._onJsonReady);

}

_onJsonReady(json) {
const albums = json.albums;
const albumContainer = document.querySelector('#album-container');
for (const info of albums) {
const album = new Album(albumContainer, info.url);

}
}

_onResponse(response) {
return response.json();

}
i}

Milestone 3: Create albums

Milestone 3: CodePen

Mariah Carey's albums
By year, descending By year, ascending By title, alphabetical

MARIAH CAREY

o
w
o
<
O
I
<
o
<
b3

https://codepen.io/bee-arcade/pen/ff93758ecd58fabc4b74979b79f6dace?editors=0011

Milestone 4: Sort by year, asc

Let's now implement the Sort by Year, Ascending:
- On button click:
Print to console
Unrender albums
- Sort albums data
Rerender albums

Mariah Carey's albums

By year, descending | By year, ascending By title, alphabetical

Milestone 4: Sort by year, asc

cl {
constructor() {

const ascButton = document.querySelector('#asc');
ascButton.addEventListener('click', this._onAscClick);

}

_onAscClick() {
console.log('Clicked');

\{ 1/
loadAlbums() {
fFat+r~h(ICSNN DATHN

Start with adding an event handler and log to make sure it
works: CodePen

https://codepen.io/bee-arcade/pen/537708a9ce65d1d97166ac7d39321340?editors=0011

Now we want to:

Unrender the
albums

class App {
constructor() {
const ascButton = document.querySelector('#as
ascButton.addEventListener('click', this._on/

}

_onAscClick() {
console.log('Clicked");

}

loadAlbums() {
fetch(JSON_PATH)
.then(this._onResponse)
.then(this._onJsonReady);

}

_onJsonReady(json) {
const albums = json.albums;
const albumContainer = document.querySelector
for (const info of albums) {
const album = new Album(albumContainer, int

}
¥

Now we want to:

Unrender the
albums
(CodePen)

class App {
constructor() {
const ascButton = document.querySelector('#asc
ascButton.addEventListener('click', this._onAs

}

_onAscClick() {
const albumContainer = document.querySelector(
albumContainer.innerHTML = '';

}

loadAlbums() {
fetch(JSON_PATH)
.then(this._onResponse)
.then(this._onJsonReady);

}

_onJsonReady(json) {
const albums = json.albums;
const albumContainer = document.querySelector(
for (const info of albums) {
const album = new Album(CalbumContainer, infc

}
}

https://codepen.io/bee-arcade/pen/fa6237764d5dc5856523e45366036d5b?editors=0011

class App {
constructor() {
const ascButton = document.querySelector('#asc
ascButton.addEventListener('click', this._onAs

Now we want to: }
- rt the album .
Sort the albums _onAscClick(Q) {
data const albumContainer = document.querySelector(
albumContainer.innerHTML = "'';

}
Meaning we need

the json.albums
from the fetch
request available in
the onClick

loadAlbums() {

fetch(JSON_PATH)
.then(this._onResponse)
.then(this._onJsonReady);

7 QU
const albums = json.albums;]
const albumContainer = document.querySelector(
for (const info of albums) {
const album = new AlbumCalbumContainer, infc

}

}

Saving data from fetch()

We can save the data from the fetch() commandin a
field of the App class (CodePen):

ithis.albumInFo json.albums;]

const albumContaineg ment . guerySelector('#album-container');

for (const info ofl this. albumInFo

const album new Album(CalbumContainer, info.url);

}
}

But now we are using this in a callback... so
What do we need to do?

https://codepen.io/bee-arcade/pen/d409d7357eda4146fcc9506025050e26?editors=0011

Saving data from fetch()

We need to bind _onJsonReady in the constructor:

class App {
constructor() {
[this._onJsonReady this._oanonReady.bind(this);]

this.albumInfo = {};

const ascButton = document.querySelector('#asc');
ascButton.addEventListener('click', this._onAscClick);

}

Saving data from fetch()

We are now going to sort the album info on click
(CodePen):

_onAscClick() {
const albumContainer = document.querySelector('#album-container');

Ty

albumContainer.innerHTML s
this.albumInfo.sort(function(a, b) {
return a.year - b.year;
3
console.log(this.albumInfo);
}

But now we are using this in an event handler... so...
What do we need to do?

https://codepen.io/bee-arcade/pen/d409d7357eda4146fcc9506025050e26?editors=0011

Saving data from fetch()

We need to bind _onAscClick in the constructor:

class App {
constructor() {
this._onJsonReady = this._onJsonReady.bind(this);
[this._onAsc(Click = this._onAscClick.bind(this);]

this.albumInfo = {};

const ascButton = document.querySelector('#asc');
ascButton.addEventListener('click', this._onAsc(Click);

class App {
constructor() {
this._onJsonReady = this._onJsonReady.bind(this);
this._onAscClick = this._onAscClick.bind(this);

this.albumInfo = {};

Last, we want to: const ascButton = document.querySelector('#asc');
ascButton.addEventListener('click', this._onAsc(Clic
- Rerender the }
albums data

_onAscClick() {
const albumContainer = document.querySelector('#all
albumContainer.innerHTML = '';
this.albumInfo.sort(function(a, b) {
return a.year - b.year;

B
console.log(this.albumInfo);

}

loadAlbums() {
fetch(JSON_PATH)
.then(this._onResponse)
.then(this._onJsonReady);

Rerender albums data

We can put the render code in a helper method and call it:
(CodePen)

_onAscClick() {
this.albumInfo.sort(function(a, b) {
return a.year - b.year;

s
this._renderAlbums();

}

_renderAlbums() {
const albumContainer = document.querySelector('#album-container');
albumContainer.innerHTML = "';
for (const info of this.albumInfo) {

const album = new Album(albumContainer, info.url);

}
}

https://codepen.io/bee-arcade/pen/02c3052266d82a76b0fdba9b7a3f9e93?editors=0011

Milestone 4: Sort by year, asc

Milestone 4: CodePen

Mariah Carey's albums

By year, descending ' By year, ascending | By title, alphabetical

https://codepen.io/bee-arcade/pen/02c3052266d82a76b0fdba9b7a3f9e93?editors=0011

Milestone 5: Other buttons

Finally, let's implement the other two buttons:

Mariah Carey's albums

By year, descending | By year, ascending By title, alphabetical

Actually, the behavior is almost identical for each button,
except the sort function...

Add Sort

Let's add a SortButton class

- The App class will create 3 SortButtons

Button class

Each SortButton will take a sorting function as a

parameter.

script.js

4

{ App

/

=
\

albums. json

[SortButton} [Album }

Sorting the albums

But then when we click a sort button, we want the Albums

to be sorted...

and the Albums are in the App class.

- Q: How do we communicate between SortButton

and App?

script.js

4

{ App

S

J*____’

== *[SortButton }

Click event!

albums. json

"App, you should sort

yourself with my
sorting function”

Sorting the albums

We can add an onClickCallback in the SortButton
constructor (or fire a CustomEvent):

class SortButton {
constructor(containerElement, onClickCallback, sortFunction) {
this._onClick = this._onClick.bind(this);
this.onClickCallback = onClickCallback;

this.sortFunction = sortFunction;
containerElement.addEventListener('click', this._onClick);

}

_onClick(Q) {
this.onClickCallback(this.sortFunction);
}
}

Sorting the albums

When
constructing
SortButton,
pass it the
sortAlbums

function.

class App {

constructor() {

}

}

this._onJsonReady = this._onJsonReady.bind(this);
this._sortAlbums = this._sortAlbums.bind(this);

this.albumInfo = {};

const ascElement = document.querySelector('#asc');
const ascButton = new SortButton(

ascElement, this._sortAlbums, SORT_YEAR_ASC);
const descElement = document.querySelector('#desc');
const descButton = new SortButton(

descElement, this._sortAlbums, SORT_YEAR_DESC);
const alphaElement = document.querySelector('#alpha');
const alphaButton = new SortButton(

alphaElement, this._sortAlbums, SORT_ALPHA_TITLE);

_sortAlbums(sortFunction) {

this.albumInfo.sort(sortFunction);
this._renderAlbums();

Milestone 5: Completed!

Milestone 5: CodePen / GitHub

Mariah Carey's albums

By year, descending ' By year, ascending | By title, alphabetical

https://codepen.io/bee-arcade/pen/1169a5760153ee5f6877a8b6f7c30521
https://github.com/yayinternet/lecture17/tree/master/oo-albums

Another look on Promises

Promises vs Callbacks

Callbacks:
- The simplest solution to asynchronous tasks
- We can lose control over callbacks that tie together
other callbacks (callback hell)

a(function (resultsFromA) {
b(resultsFromA, function (resultsFromB) {
c(resultsFromB, function (resultsFromC) {
d(resultsFromC, function (resultsFromD) {
e(resultsFromD, function (resultsFromE) A{
,rmﬂ f(resultsFromE, function (resultsFromF) {
%LI! i console. log(resultsFromF) ;

})

Promises vs Callbacks

Promises: R
. . . doSomething(function(result) {
- A Promlse IS an ObjeCt doSomethingElse(result, function(newResult) {
doThirdThing(newResult, function(finalResult) {
1 console.log('Got the final result: ' + finalResult);
representing the eventual el deel &

}, failureCallback);

completion or failure of an }, failurecallback);
asynchronous operation. Promises
- It has three well defined dosonething()

.then(function(result) {
return doSomethingElse(result);

states: 1)
.then(function(newResult) {
_ 1 return doThirdThing(newResult);
Pending .
. .then(function(finalResult) {
- FUIf|”ed console.log('Got the final result: ' + finalResult);
3
. .catch(failureCallback);
- Rejected

- They can be easily chained
avoiding the callback hell.

Promises AP

- How to create new Promise objects

// New Promises start in “Pending” state

const myPromise = new Promise(function (resolve, reject) {
// Transition to “Rejected” state
reject(new Error());

// Transition to “Fulfilled” state
resolve({ my: 1)

});

Promises API: example

const sendMail = function(toEmail, message) {
return new Promise(function (resolve, reject) {
if (toEmail.exists()) {
try {
SendEmailAPI(toEmail, message); // Takes time!
// Transition to “Fulfilled” state
resolve();

} catch () {

reject(new Error(err));

}
} else {
// Transition to “Rejected” state
reject(new Error());
}
1)

Promises API: Composition

- You can wait for multiple Promises to fulfill using
Promise.all

Promise.resolve(3);
42;
new Promise((resolve, reject) => {

const promisel
const promise2
const promise3
setTimeout(resolve, 2000, 'foo');

1
2
3
4
-1 5 1s
6
7
8
9

Promise.all([promisel, promise2, promise3]).then((values) => {
console.log(values);

1)

11 // expected output: Array [3, 42, "foo"]

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all

Promises API: Composition

- You can wait for at least one of the Promises to fulfill using
Promise.any.

Promise.reject(0);
new Promise((resolve) => setTimeout(resolve, 100, 'quick'));
new Promise((resolve) => setTimeout(resolve, 500, 'slow'));

const promisel
const promise2
const promise3

const promises = [promisel, promise2, promise3];

Promise.any(promises).then((value) => console.log(value));

O 00 N OV B W N

// expected output: "quick"

[EEY
(&)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/any

Promises API: Composition

- You can wait for at least one of the Promises to fulfill or
reject using Promise.race.

const promisel = new Promise((resolve, reject) => {
setTimeout(resolve, 500, ‘one');

1)

setTimeout(resolve, 100, 'two');

1
2
3
4
5 const promise2 = new Promise((resolve, reject) => {
6
7 1)

8

9 Promise.race([promisel, promise2]).then((value) => {
10 console.log(value);

11 // Both resolve, but promise2 is faster

12 });
13 // expected output: "two"

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race

Promises AP

- Some references:
- Checkout the MDN page about Promises

- Also these great slides from a Derek Stavis’s talk

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises
https://www.slideshare.net/derekstavis/you-will-exit-this-meetup-using-javascript-promises

Querying REST APlIs

First: Servers again

Servers

Sometimes when you type a URL in your browser,
the URL is a path to a file on the internet:

- Your browser connects to the host address
and requests the given file over HTTP

- The web server software (e.g. Apache) grabs
that file from the server's local file system,
and sends back its contents to you

HTTP: Hypertext Transfer Protocol, the protocol for sending

files and messages through the web

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

HTTP methods

HTTP Methods: the set of commands understood by a web
server and sent from a browser

- GET: request/retrieve data
This is request sent by the browser automatically
whenever you navigate to a URL!

- POST: send/submit data
- PUT: upload file

- PATCH: updates data

- DELETE: delete data

- More HTTP methods

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

You type a URL in
the address bar and
hit "enter"

& . https://murilocamargos.github.io/iw

Server at
https://murilocamargos.github.io

Browser sends an HTTP GET .

. | (|

request saying "Please GET me —

the index.html file at — E—
https://murilocamargos.github.io ‘Re‘z_tff‘)g'

{ -

(Warning: Somewhat inaccurate,
massive hand-waving begins now.

See this Quora answer for slightly more detailed/accurate handwaving)

https://www.quora.com/What-is-the-role-of-OSI-layers-when-we-open-a-webpage

Server at
https://murilocamargos.github.io

= -
HTML

Assuming all goes well, the

server responds by sending the
HTML file through the internet
back to the browser to display.

Servers

Sometimes when you type a URL in your browser,

the URL is a path to a file on the internet:

Your browser connects to the host address
and requests the given file over HTTP

The web server software (e.g. Apache) grabs
that file from the server's local file system,
and sends back its contents to you

But that's not always the case.

Web Services

Other times when you type a URL into your
browser, the URL represents an APl endpoint,
and not a path to a file.

That is:

- The web server does not grab a file from
the local file system, and the URL is not
specifying where a file is located.

- Rather, the URL represents a
parameterized request, and the web
server dynamically generates a response
to that request.

APl endpoint example

Look at the URL for this Google slide deck:

https://docs.google.com/presentation/d/1WmNb6bbFKP
CqCNwsw4brDg3R-X1h144wMO1x602x7FQ

https://docs.google.com/presentation/d/1WmNb6bbFKPCqCNwsw4brDg3R-X1hl44wM0lx6O2x7FQ

APl endpoint example

Look at the URL for this Google slide deck:

https://docs.google.com/presentation/d/1WmNb6bbFKP
CqCNwsw4brDg3R-X1h144wMO1x602x7FQ

presentation: Tells the server that we are requesting a doc
of type "presentation”
- d/1WmNb6bbFKPCqCNwsw4brDg3R-X1h144wMO1x602x7FQ:

Tells the server to request a doc ("d") with the document id of
"TWmNb6bbFKPCgCNwsw4brDg3R-X1hl44wMOIx602x7FQ"

https://docs.google.com/presentation/d/1WmNb6bbFKPCqCNwsw4brDg3R-X1hl44wM0lx6O2x7FQ

RESTful API

RESTful APIl: URL-based API that has these properties:

- Requests are sent as an HTTP request:

- HTTP Methods: GET, PUT, POST, DELETE, etc

- Requests are sent to base URL, also known as an "API
Endpoint”

- Requests are sent with a specified MIME/content type,

such as HTML, CSS, JavaScript, plaintext, JSON, etc.

https://en.wikipedia.org/wiki/Representational_state_transfer#Applied_to_Web_services
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
https://en.wikipedia.org/wiki/Media_type

RESTful API

Almost every website on the internet uses RESTful URLs /
RESTful APIs to handle requests to its servers.

Notable alternatives to REST:
- GraphQl,
- Used by Facebook since 2012
- Open-sourced by Facebook since 2015

- Still early but some big clients: GitHub, Pinterest
- Falcor?

- Netflix's REST alternative, introduced ~2015

- Probably cool but never hear of anyone using it

- Doesn't even have a Wikipedia page

http://graphql.org/
https://netflix.github.io/falcor/

Using REST APIs

Ard-Party APIs

Many websites expose REST APIs to outside developers.
These are often called "3rd-party APIs" or "Developer APIs"

Examples:

- Spotify Try Googling

) Glphy " "

< >

. GitHub product name> API
- Hoards of Google APIs to see if one exists for
- Facebook a given company!

- Instagram

- Twitter

- efc...

Example: TVMaze

TVMaze has a REST API that external developers (i.e. people
who aren't TVMaze employees) can query:

{[TVMAZE] > AP

If you want to add TV information to your website or app then you've come to the right place!

We provide a free, fast and clean REST API that's easy to use, returns JSON and conforms to the HATEOAS and HAL principles. The root url is http://api.tvmaze.com and the
available endpoints are documented below. If you have any questions or suggestions regarding the API, please post them on our forums.

In addition to the free public API, there's a user-level API available for all Premium members. The documentation for the user API can be viewed here.

To stay up to date with the latest changes, you can follow the changelog thread here.

Table of Contents

Search

e Show Search

¢ Show single search

e Show Lookup

¢ People search
Schedule

¢ Web/Streaming Schedule
e Full Schedule

Shows

e Show main information
e Show episode list

¢ Episode by number

e Episodes by date
e Show seasons
e Season episodes
e Show cast
e Show crew
e Show AKA's
e Show images
e Show index
Episodes
e Episode main information
People
¢ Person main information

e Person cast credits
e Person crew credits
Updates

e Show updates
Embedding

Images

HTTPS

Caching

Rate Limiting

Cors

Licensing
Enterprise API

https://www.tvmaze.com/api

Example: TVMaze

REST API structure (details):
- The Base URL is https://api.tvmaze.com
- The HTTP method is GET

- The API endpoint to query is:
https://api.tvmaze.com/search/shows?qg=:query

- It returns JSON data about the album that's requested

Show search

Search through all the shows in our database by the show's name. A fuzzy algorithm is used (with a fuzziness value of 2), meaning that shows will be found even if your query
contains small typos. Results are returned in order of relevancy (best matches on top) and contain each show's full information.

The most common usecase for this endpoint is when you're building a local mapping of show names to TVmaze ID's and want to make sure that you're mapping to exactly the
right show, and not to a different show that happens to have the same name. By presenting each show's basic information in a Ul, you can have the end-user pick a specific
entry from that list, and have your application store the chosen show's ID or URL. Any subsequent requests for information on that show can then be directly made to that
show's URL.

¢ URL: /search/shows?q=:query
e Example: http://api.tvmaze.com/search/shows?q=girls

https://www.tvmaze.com/api#show-search

Example: TVMaze

If we had a TV Show name “The Witcher”, how would we
make a GET request for the album information?

REST API structure (details):
- The Base URL is https://api.tvmaze.com
- The HTTP method is GET
- The APl endpoint to query is:
https://api.tvmaze.com/search/shows?qg=:query
- It returns JSON data about the album that's requested

https://www.tvmaze.com/api#show-search

GET request: Browse to URL

Loading a URL in a browser issues an HTTP GET request for
that resource.

So if we just piece together this URL:

- APl Endpoint:
https://api.tvmaze.com/search/shows?q=The Witcher

- Query: The Witcher

- Request URL:
https://api.tvmaze.com/search/shows?g=The Witcher

If you click on the link, you see it returns a JSON object.

https://api.tvmaze.com/search/shows?q=The

GET request: fetch()

Actually, the fetch() APl also issues an HTTP GET request
by default.

So if we do:

fetch('https://api.tvmaze.com/search/shows?qg=The
Witcher")

.then(onResponse)

.then(onTextReady);

...we can load the JSON data as a JavaScript object, as we
did with our .json files!
(CodePen)

https://codepen.io/murilocamargos/pen/LYxJrXv?editors=1111

Shows example

Let's write a web page that asks the user to enter a search
query, then displays the found tv shows

Enter aTV show name:

|dexter | | Enviar |

TVMaze search API

TVMaze Search URL:
https://api.tvmaze.com/search/shows?qg=query

E.g.

https://api.tvmaze.com/search/shows?g=The Witcher

Q: Hey, what's that at the end of the URL?

- ?g=The Witcher

https://api.tvmaze.com/search/shows?q=The
https://api.spotify.com/v1/search?type=album&q=query
https://api.tvmaze.com/search/shows?q=The

Query parameters

You can pass parameters to HTTP GET requests by adding
query parameters to the URL:

?g=The Witcher¶m2=...

Defined as key-value pairs
- param=value
- The first query parameter starts with a ?
- Subsequent query parameters start with &

Reminder: HTML elements

Single-line text input:

<input type="text" /> hello|

In JavaScript, you can read and set the input text via
inputElement.value

Some other input types:
- Select

- Textarea

- Checkbox

https://codepen.io/bee-arcade/pen/963ae17d61f828a7b5c321c148b84e40?editors=1011
https://codepen.io/bee-arcade/pen/bd301158f62a54e40eea37da1aff0d7a?editors=1011
https://codepen.io/bee-arcade/pen/714933b816bf4f91a6ae4ab8eba6b649?editors=1011

Form submit

dexter " | Enviar |

Q: What if you want the form to submit after you click
"enter"?

Form submit

1. Wrap your input elementsina <form>

input type="text" id="tv-show-text"

input type="submit"”

You should also use <input type="submit"> instead of
<button> for the reason on the next slide...

Form submit

2. Listen for the 'submit' event on the form element:

const form = document.querySelector('form');

form.addEventListener('submit’, this. onSubmit);

This is why you want to use <input type="submit">
instead of <button> -- the 'submit' event will fire on click
for but not <button>.

Form submit

3. Prevent the default action before handling the event
through event.preventDefault():

_onSubmit(event) {
event.preventDefault();
const textInput = document.querySelector('#tv-show-text');
~onst query = encodeURIComponent(textInput.value);

this.showUrls = [];
fetch(TVMAZE_PATH + query)
.then(this. onResponse)

.then(this._onJsonReady);

The page will refresh on submit unless you explicitly
prevent it.

Show search example

Solution: GitHub / Demo

Enter aTV show name:

|dexter | | Enviar |

SREATIIRE

https://github.com/murilocamargos/iwp/tree/main/pages/tvmaze-search
https://murilocamargos.github.io/iwp/pages/tvmaze-search/

