INnteractive Web
Programming

1st semester of 2021

Murilo Camargos
(murilo.filho@fgv.br)

Heavily based on Victoria Kirst slides

https://web.stanford.edu/class/archive/cs/cs193x/cs193x.1176/lectures/

Schedule

Today:
- Querying REST APIs
- Form submission
- Fetch API gotchas
- CORS and Closures
- Single-threaded asynchrony
- JS Event loop
Next:
- D3 lib!

HW4 is out! Due May 11.

https://murilocamargos.github.io/iwp/homework/4-info-fetch

JSON

JavaScript Object Notation

JSON: Stands for JavaScript Object Notation
- Created by Douglas Crockford
- Defines a way of serializing JavaScript objects

- to serialize: to turn an object into a string that can
be deserialized

- to deserialize: to turn a serialized string into an
object

Fetch APl and JSON

The Fetch API also has built-in support for JSON:

function onJsonReady(json) {
console.log(json);

} Return
response.json()

function onResponse(response) { instead of

return response.json(); response.text()

} and Fetch will
essentially call

fetch('images.json") JSON.parse() on the

.then(onResponse) response string.

.then(onJsonReady);

Querying REST APlIs

Why APIs?

- Simple and standardized to
access resources.

- It can be easily scalable.

- It offers more security
through isolation.

Mobile App

.
. ")-

L

Desktop Client

{
|
|
|
|
|
|
|
|
|
|
|

|
~(Mobile Team l\ - Web Team =~

Nk s (APITeam - = = = =/= = = = s
e s s VT T TS TR T T \
| | | |
' o I
| o !
: o :
o
*={JeamA y T T~ (JeamB)"~~~

https://samnewman.io/patterns/architectural/bff/

https://samnewman.io/patterns/architectural/bff/

RESTful API

RESTful APIl: URL-based API that has these properties:

Requests are sent as an HTTP request:

- HTTP Methods: GET, PUT, POST, DELETE, etc

Requests are sent to base URL, also known as an "API
Endpoint”
Simple and standardized
- Always use HTTP protocol and methods
Scalable and stateless
- Don’t have to synchronize data state across front
and back-ends.
Good performance with caching

https://en.wikipedia.org/wiki/Representational_state_transfer#Applied_to_Web_services
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

RESTful APl example

Let’s say we have an Ice Cream Shop website that allows the
user to see the available flavors and the manager to change
that information.

The API can be accessed at https://www.icecream.com/api/

Request
,
‘ <—

Response

API Database

RESTTul APl example

We would like to

perform CRUD

operations: Header Header Status

Operation | HTTP method

Create POST Method Endpoint Body (bytes, text, json)
Read GET
Update | PUT Params/Body

Delete DELETE

RESTTul APl example

If we want to read the list of available flavors:

Header Header Status
Auth data 200
Method Endpoint Body (bytes, text, json)
GET /ﬂaVOFS [{“id”: 1, “name” :
“strawberry”},
Params/Body {“id» : 2, “name”:
“vanilla”}]

RESTTul APl example

We can also get a specific flavor

Header Header Status
Auth data 200
Method Endpoint Body (bytes, text, json)
GET /flavors/1

{“id”: 1, “name”:
Params/Body “strawberry”}

RESTTul APl example

Let’s say we want to change a flavor’s name

Header Header Status
Auth data 200
Method Endpoint Body (bytes, text, json)
PUT /flavors/1

{“id”: 1, “name”:
Params/Body “banana”}

{“name”: “banana”}

RESTTul APl example

Let’s say we want to create a new flavor

Header Header Status
Auth data 201
Method Endpoint Body (bytes, text, json)
POST /flavors

{“id”: 3, “name”:
Params/Body “Iemon”}

{“name”: “lemon”}

RESTTul APl example

We can also delete a resource using DELETE HTTP method

Header Header Status
Auth data 204
Method Endpoint Body (bytes, text, json)

DELETE /flavors/2

Params/Body

RESTful API

Almost every website on the internet uses RESTful URLs /
RESTful APIs to handle requests to its servers.

Notable alternatives to REST:
- GraphQl,
- Used by Facebook since 2012
- Open-sourced by Facebook since 2015

- Still early but some big clients: GitHub, Pinterest
- Falcor?

- Netflix's REST alternative, introduced ~2015

- Probably cool but never hear of anyone using it

- Doesn't even have a Wikipedia page

http://graphql.org/
https://netflix.github.io/falcor/

Using REST APIs

Ard-Party APIs

Many websites expose REST APIs to outside developers.
These are often called "3rd-party APIs" or "Developer APIs"

Examples:

- Spotify Try Googling

) Glphy " "

< >

. GitHub product name> API
- Hoards of Google APIs to see if one exists for
- Facebook a given company!

- Instagram

- Twitter

- efc...

Example: TVMaze

TVMaze has a REST API that external developers (i.e. people
who aren't TVMaze employees) can query:

{[TVMAZE] > AP

If you want to add TV information to your website or app then you've come to the right place!

We provide a free, fast and clean REST API that's easy to use, returns JSON and conforms to the HATEOAS and HAL principles. The root url is http://api.tvmaze.com and the
available endpoints are documented below. If you have any questions or suggestions regarding the API, please post them on our forums.

In addition to the free public API, there's a user-level API available for all Premium members. The documentation for the user API can be viewed here.

To stay up to date with the latest changes, you can follow the changelog thread here.

Table of Contents

Search

e Show Search

¢ Show single search

e Show Lookup

¢ People search
Schedule

¢ Web/Streaming Schedule
e Full Schedule

Shows

e Show main information
e Show episode list

¢ Episode by number

e Episodes by date
e Show seasons
e Season episodes
e Show cast
e Show crew
e Show AKA's
e Show images
e Show index
Episodes
e Episode main information
People
¢ Person main information

e Person cast credits
e Person crew credits
Updates

e Show updates
Embedding

Images

HTTPS

Caching

Rate Limiting

Cors

Licensing
Enterprise API

https://www.tvmaze.com/api

Example: TVMaze

REST API structure (details):
- The Base URL is https://api.tvmaze.com
- The HTTP method is GET

- The API endpoint to query is:
https://api.tvmaze.com/search/shows?qg=:query

- It returns JSON data about the album that's requested

Show search

Search through all the shows in our database by the show's name. A fuzzy algorithm is used (with a fuzziness value of 2), meaning that shows will be found even if your query
contains small typos. Results are returned in order of relevancy (best matches on top) and contain each show's full information.

The most common usecase for this endpoint is when you're building a local mapping of show names to TVmaze ID's and want to make sure that you're mapping to exactly the
right show, and not to a different show that happens to have the same name. By presenting each show's basic information in a Ul, you can have the end-user pick a specific
entry from that list, and have your application store the chosen show's ID or URL. Any subsequent requests for information on that show can then be directly made to that
show's URL.

¢ URL: /search/shows?q=:query
e Example: http://api.tvmaze.com/search/shows?q=girls

https://www.tvmaze.com/api#show-search

Example: TVMaze

If we had a TV Show name “The Witcher”, how would we
make a GET request for the album information?

REST API structure (details):
- The Base URL is https://api.tvmaze.com
- The HTTP method is GET
- The APl endpoint to query is:
https://api.tvmaze.com/search/shows?qg=:query
- It returns JSON data about the album that's requested

https://www.tvmaze.com/api#show-search

GET request: Browse to URL

Loading a URL in a browser issues an HTTP GET request for
that resource.

So if we just piece together this URL:

- APl Endpoint:
https://api.tvmaze.com/search/shows?q=The Witcher

- Query: The Witcher

- Request URL:
https://api.tvmaze.com/search/shows?g=The Witcher

If you click on the link, you see it returns a JSON object.

https://api.tvmaze.com/search/shows?q=The

GET request: fetch()

Actually, the fetch() APl also issues an HTTP GET request
by default.

So if we do:

fetch('https://api.tvmaze.com/search/shows?qg=The
Witcher")

.then(onResponse)

.then(onTextReady);

...we can load the JSON data as a JavaScript object, as we
did with our .json files!
(CodePen)

https://codepen.io/murilocamargos/pen/LYxJrXv?editors=1111

Shows example

Let's write a web page that asks the user to enter a search
query, then displays the found tv shows

Enter aTV show name:

|dexter | | Enviar |

TVMaze search API

TVMaze Search URL:
https://api.tvmaze.com/search/shows?qg=query

E.g.

https://api.tvmaze.com/search/shows?g=The Witcher

Q: Hey, what's that at the end of the URL?

- ?g=The Witcher

https://api.tvmaze.com/search/shows?q=The
https://api.spotify.com/v1/search?type=album&q=query
https://api.tvmaze.com/search/shows?q=The

Query parameters

You can pass parameters to HTTP GET requests by adding
query parameters to the URL:

?g=The Witcher¶m2=...

Defined as key-value pairs
- param=value
- The first query parameter starts with a ?
- Subsequent query parameters start with &

Reminder: HTML elements

Single-line text input:

<input type="text" /> hello|

In JavaScript, you can read and set the input text via
inputElement.value

Some other input types:
- Select

- Textarea

- Checkbox

https://codepen.io/bee-arcade/pen/963ae17d61f828a7b5c321c148b84e40?editors=1011
https://codepen.io/bee-arcade/pen/bd301158f62a54e40eea37da1aff0d7a?editors=1011
https://codepen.io/bee-arcade/pen/714933b816bf4f91a6ae4ab8eba6b649?editors=1011

Form submit

dexter " | Enviar |

Q: What if you want the form to submit after you click
"enter"?

Form submit

1. Wrap your input elementsina <form>

input type="text" id="tv-show-text"

input type="submit"”

You should also use <input type="submit"> instead of
<button> for the reason on the next slide...

Form submit

2. Listen for the 'submit' event on the form element:

const form = document.querySelector('form');

form.addEventListener('submit’, this. onSubmit);

This is why you want to use <input type="submit">
instead of <button> -- the 'submit' event will fire on click
for but not <button>.

Form submit

3. Prevent the default action before handling the event
through event.preventDefault():

_onSubmit(event) {
event.preventDefault();
const textInput = document.querySelector('#tv-show-text');
~onst query = encodeURIComponent(textInput.value);

this.showUrls = [];
fetch(TVMAZE_PATH + query)
.then(this. onResponse)

.then(this._onJsonReady);

The page will refresh on submit unless you explicitly
prevent it.

Show search example

Solution: GitHub / Demo

Enter aTV show name:

|dexter | | Enviar |

SREATIIRE

https://github.com/murilocamargos/iwp/tree/main/pages/tvmaze-search
https://murilocamargos.github.io/iwp/pages/tvmaze-search/

Other REST APIs

Giphy API

Search Endpoint

Search all Giphy GIFs for a word or phrase. Punctuation will be stripped and ignored. Use a plus or url encode for
phrases. Example paul+rudd, ryan+gosling or american+psycho.

http://api.giphy.com/v1l/gifs/search?g=funny+cat&api_key=dc6zaTOxFImzC

Example search query.

Path

/v1l/gifs/search

Parameters

q - search query term or phrase

limit - (optional) number of results to return, maximum 100. Default 25.
offset - (optional) results offset, defaults to 0.

rating - (optional) limit results to those rated (y,g, pg, pg-13 orr).

lang - (optional) specify default country for regional content; format is 2-letter ISO 639-1 country code. See list
of supported languages here

fmt - (optional) return results in html or json format (useful for viewing responses as GIFs to debug/test)

https://github.com/Giphy/GiphyAPI#search-endpoint

https://github.com/Giphy/GiphyAPI#search-endpoint

Yelp API

/businesses/search

This endpoint returns up to 1000 businesses based on the provided search criteria. It has some basic information
about the business. To get detailed information and reviews, please use the business id returned here and refer to
/businesses/{id} and /businesses/{id}/reviews endpoints.

Note: at this time, the API does not return businesses without any reviews.

Request

GET https://api.yelp.com/v3/businesses/search

Parameters

These parameters should be in the query string.

Name Type
term string
location string
latitude decimal
longitude decimal

Description

Optional. Search term (e.g. "food", "restaurants"). If term isn’t included we search
everything. The term keyword also accepts business names such as "Starbucks".

Required if either latitude or longitude is not provided. Specifies the combination of
"address, neighborhood, city, state or zip, optional country" to be used when
searching for businesses.

Required if location is not provided. Latitude of the location you want to search
nearby.

Required if location is not provided. Longitude of the location you want to search
nearby.

https://www.yelp.com/developers/documentation/v3/business

search

https://www.yelp.com/developers/documentation/v3/business_search

Fetch gotchas

CORS error

If you try to fetch() this JSON file:
https://web.stanford.edu/class/archive/cs/cs193x/cs193x.1176/I

ectures/18/albums.json
You get this error:

(x ﬂ Elements Console Sources Network Performance Memory Application Security Audits 02 s D

© | top v Filter Info v e

® Fetch API cannot load http://web.stanford.edu/class/cs193x/lectures/18/albums.json. No fetch-json.html:1

'Access-Control-Allow-0rigin' header is present on the requested resource. Origin 'null' is therefore not
allowed access. If an opaque response serves your needs, set the request's mode to 'no-cors' to fetch the

resource with CORS disabled.

Q: Why do we get this error, when the JSON file is served over
HTTP?

https://web.stanford.edu/class/archive/cs/cs193x/cs193x.1176/lectures/18/albums.json
https://web.stanford.edu/class/archive/cs/cs193x/cs193x.1176/lectures/18/albums.json

CORS

CORS: Cross-Origin Resource Sharing (wiki)
- Browser policies for what resources a web page can load

- Cross-origin: between two different domains

- If abc.com/users requests something from
abc.com/search, it's still a same-origin request (not
cross-origin) because it's the same domain

- But if abc.com/foo requests something from
xyz.com/foo, it's a cross-origin request.

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

CORS summarized

- You can make same-origin requests by default for any
request type

- You can make cross-origin requests by default for:
- Images loaded via
- CSS files loaded via <link>
- JavaScript files loaded via <script>
- Etc

- You cannot make cross-origin requests by default for:
- Resources loaded via fetch() or XHR

CORS configuration

However, a web server can be configured to override these
default rules:

- If you want to allow other domains to make fetch()
requests to your servers, you can configure your server to
allow them (e.g. on apache)

- All 3rd party APIs do this, otherwise you couldn't

access them

- If you don't want other domains to certain resources such
as images, you can disallow them

https://enable-cors.org/server_apache.html

INn this class

In IWP, we will either be:
- Making same-origin requests
- Making requests on APIs that have allowed cross-origin
access

So you don't need to do anything with CORS for IWP.

Still, CORS is good to know about:
- Helps you understand error messages
- You may have to deal with this in the future (common
scenario: file:// trying to access an HTTP resource: HTTP
resource must allow CORS for this to be allowed)

Fetch and closures

loadAlbums() {
fetch(JSON_PATH)
.then(this._onResponse)
.then(this._onJsonReady);

}
What if instead of

_onJsonReady(json
code like this in a y(3son) {

this.albumInfo = json.albums;
class: (CodePen) this._renderAlbums();

}

_onResponse(response) {
return response.json();

}

https://codepen.io/bee-arcade/pen/1169a5760153ee5f6877a8b6f7c30521

Fetch and closures

We wrote code that
looked like this, where
onResponse and
onJsonReady were
inner functions
(CodePen):

loadAlbums() {
function onlsonReady(json) {
this.albumInfo = json.albums;
this._renderAlbums();
}
function onResponse(response) {
return response.json();
}
fetch(JSON_PATH)
.then(onResponse)
.then(onJsonReady);

https://codepen.io/bee-arcade/pen/3d4ed6fa883f6083a5bca5ed82dc7958

Fetch and closures

Even if we bind 1loadAlbums:

class App {
constructor() {
this.loadAlbums = this.loadAlbums.bind(this);

We get this error (CodePen):

[w ﬂ Elements Console Sources Network Performance Memory Application

© top v Filter Info v

® Uncaught (in promise) TypeError: Cannot set property 'albumInfo' of undefined

https://codepen.io/bee-arcade/pen/3d4ed6fa883f6083a5bca5ed82dc7958

Closures and this

loadAlbums() {

Every function has its own function onJsonReady(json) {

"this" argument, this.albumInfo = json.albums;
meaning closures (inner this._renderAlbums();
functions) also have their ¥

function onResponse(response) {

own "this" arguments... :
return response.json();

3

fetch(JSON_PATH)
.then(onResponse)
.then(onJsonReady);

Closures and this

So even if you've bound
the this value for
loadAlbums, it doesn't
bind the this value for
the closures.

oadAlbums() {

function onJsonReady(json) {
this.albumInfo = json.albums;
this._renderAlbums();

g
function onResponse(response) {
return response.json();

X

}

fetch(JSON_PATH)
.then(onResponse)
.then(onJsonReady);

Solution T:

Bind explicitly

You can bind the closures LloadAlbums() {

to the this value of

function onJsonReady(json) {
this.albumInfo = json.albums;

loadAlbums when it is this._renderAlbums();
called: (CodePen) ¥

function onResponse(response) {
return response.json();
}
fetch(JSON_PATH)
.then(onResponse.bind(this))
.then(onJsonReady.bind(this));

https://codepen.io/bee-arcade/pen/6a78f5ac00adf2e395d9ddadf97ccc7f

Solution 2: Bind with =>

Functions defined with 1oadAlbums() {

const onJsonReady = (json) => {
the arrow syntax are this.albumInfo = json.albums;
auto-bound to the "this" this._renderAlbums();
of their enclosing =
context (CodePen): const onResponse = (response) => {
return response.json();
s
fetch(JSON_PATH)
.then(onResponse)
.then(onJsonReady);

https://codepen.io/bee-arcade/pen/772fbda2e53f053052a6065623ddec5d

Solution 2: Bind with =>

loadAlbums() {
. const onJsonReady = (json) => {
concise syntax: this.albumInfo = json.albums;
this._renderAlbums();
&
fetch(JSON_PATH)
.then(response => response.json())
.then(onJsonReady);

We can also use the

Single-threaded asynchrony

Recall:

Discography page

We wrote a web page that lists the Mariah Carey albums

stored in albums.json and lets us sort the albums:

(CodePen / demo)

Mariah Carey's albums

By year, descending || By year, ascending || By title, alphabetical

https://yayinternet.github.io/lecture17/oo-albums/albums.json
https://codepen.io/bee-arcade/pen/1169a5760153ee5f6877a8b6f7c30521
https://codepen.io/bee-arcade/live/1169a5760153ee5f6877a8b6f7c30521

Error?!

If we click on one of the buttons before the albums load,
we get an error:

® »Uncaught TypeError: Cannot read property 'sort' of undefined
at App._sortAlbums (pen.js:34)
at SortButton. onClick (pen.js:74)

Why?!

On page load

When we first load the page, the following things happen

immediately:
1. Script 3. App requests
creates albums.json through
ot A fetch()
Sc”pt"SV < { App } > albums.json

2. App creates
SortButtons

[SortButton }

On page load

When the fetch() finishes, the app creates an Album
object for each album that was fetched:

script.js

J—

App J* _____

5. App creates
Album objects

e

r‘ albums.json

4. fetch() finishes

Before fetch() returns

However, before the fetch() completes, a user might click

the sort button:

script.js A
7 { PP

|

fetch() isstill

pending

)

"App, you should sort

== *[SortButton }

Click event!

your album data"

>

albums. json

loadAlbums() {
p fetch(ISON_PATH)

The albumInfo field is .then(this._onResponse)
filled out after the .then(this._onJsonReady);
3
fetch() from
loadAlbums () returns _onJsonReady(json) {

— — = =9 this.albumInfo = json.albums;
this._renderAlbums();

}

_onResponse(response) {
return response.json();

e

_sortAlbums(sortFunction) {
this.albumlInfo.sort(sortFunction);
this._renderAlbums();

}

By year, descending

But if the button is \ _sortAlbums(sortFunction) {

clicked before this.albumInfo.sort(sortFunction);
fetch() returns, this._renderAlbums();
albumInfo is not ¥

defined yet and we
get an error.

® »Uncaught TypeError: Cannot read property 'sort' of undefined
at App._sortAlbums (pen.js:34)
at SortButton. _onClick (pen.js:74)

Asynchronous events

We have written our code in a way that assumes fetch()

will complete before clicking, but on a slow connection,

that's not a safe assumption.

script.js

4

/

7

{ App

=

/

7/

b4

"= *[SortButton }

Click event!

_ _’I albums.json

Fetch
finishes!

General problem

The problem stated generically:

- There are 2+ events that can occur at unpredictable
times, and the two events are dependent on each other
in some way

(Some people call this a "race condition", though other
people reserve the term for multiple threads only.)

Click _ < ———- Fetch
event! finishes!

Solutions

You can either "force" loading to occur before button click,
for example:

- Disable buttons until the JSON loads

- OR: Don't show buttons until the JSON loads

- OR: Don't show the Ul at all until the JSON completes

_showButtons() {
const buttonContainer = document.querySelector('#button-container');
const ascButton = new SortButton(
buttonContainer, 'By year, descending', this._sortAlbums, SORT_YEAR_ASC);
const descButton = new SortButton(
buttonContainer, 'By year, ascending', this._sortAlbums, SORT_YEAR_DESC);
const alphaElement = document.querySelector('#alpha');
const alphaButton = new SortButton(
buttonContainer, 'By title, alphabetical', this._sortAlbums, SORT_ALPHA_TITLE);

}

_onJsonReady(json) {
this.albumInfo = json.albums;
this._showButtons();
this._renderAlbums();

}

Don't show buttons until JSON is loaded ready: CodePen

https://codepen.io/bee-arcade/pen/102188e13d89fe35cf69fa480f682f5e?editors=1111

Solutions

Or you can make the button event handler work
independent of the fetch call
- Initialize albumInfo to an empty array in the
constructor
- Sorting nothing does nothing, which is fine

CodePen

https://codepen.io/bee-arcade/pen/9d293c5c757e5d74fd7f615b3ef7a574

Single-threaded asynchrony

loadAlbums() {
p fetch(ISON_PATH)

Is it possible for the
_onJsonReady function
to fire *in the middle* of

sortAlbums?

.then(this._onResponse)
.then(this._onJsonReady);

}

_onJsonReady(json) {
— — = =9 this.albumInfo = json.albums;

this._renderAlbums();

}

_onResponse(response) {

}

return response.json();

e

sortAlbums(sortFunction) {
this.albumlInfo.sort(sortFunction);
this._renderAlbums();

Th e b rOWS e r iS Mariah Carey's albums

By year, descending || By year, ascending | By title, alphabetical

fetching
albums.json...

Mariah Carey's albums

By year, descending

User clicks a
button, so the
event handler is
running

Mariah Carey's albums x
WIrEy s
Yed /

_sortAlbums(sortFunction) {

_] . this.albumInfo.sort(sortFunction);
Is it possible that while = == -5 ERie | RenderAlbunsC:

the click handler is still }
running (still on the call
stack), the fetch() —onJsonReady(json) {
. - = — =P this.albumInfo = json.albums;
callback also fires? this._renderAlbums():

}

Mariah Carey's albums

By year, descending || By year, ascending | By title, alphabetical x
.) A
JeH

_sortAlbums(sortFunction) {
this.albumInfo.sort(sortFunction);
this._renderAlbums();

The answer is No, '

because JavaScript is
single-threaded. —onJsonReady(json) {

= = = = this.albumInfo = json.albums;
this._renderAlbums();

}

Single-threaded?

Some hand-wavy definitions:

- Single-threaded:
- When your computer processes one command at a
time
- There is one call stack

- Multi-threaded
- When your computer processes multiple commands
simultaneously
- There is one call stack per thread

thread: a linear sequence of instructions; an executable
container for instructions

Single-threaded JS

- We create a new Album for each album in the JSON file
- For each album, we create a new DOM Image

_renderAlbums() {

const albumContainer = document.querySelector('#album-container');
albumContainer.innerHTML]

for (const info of this.albumInfo) {
const album = new Album(albumContainer, info.url);

3
} class Album {
constructor(albumContainer, imageUrl) {
. H H // Same as document.createElement('img');
Q: If in JavaScript, only one e e R e
thing happens at a time, image.src = imageUrl;
albumContainer.append(image);

does that mean only one }

image loads at a time?]

Image loading

Empirically, that doesn't seem to be the case:

Mariah Carey's albums

By year, descending By year, ascending By title, alphabetical

MARIAH CAREY

MARIAH)
/

Network tab

If we look at Chrome's Network tab, we see there are

several images being loaded simultaneously:

Name

| 0638f0ddf70003cb94b43aa5e4004d85...
m bca35d49f6033324d2518656531c9a89...
A 82f13700dfa78fa877a8cdecd725ad552c...
[z 676275b41e19de3048fddfb72937ec0db...
|| 2424877af9fa273690b688462c5afbads...
.| dca82bd9c1ccae90b09972027a408068...
__| 0638f0ddf70003cb94b43aa5e4004d85...
__| bca35d49f6033324d2518656531c9a89...
|| 82f13700dfa78fa877a8cdecd725ad552c...
| 676275b41e19de3048fddfb72937ec0db...

DNINQATT7afQfa27ARANKARAQANAI~RafhadR

Q: If JavaScript is single-threaded, i.e. if only one thing
happens at a time, how can images be loaded in parallel?

Status
200

200
200
200
200
200
200
200
200

200
2NN

Type
jpeg
jpeg
jpeg
jpeg
jpeg
jpeg
jpeg
jpeg
jpeg
jpeg

inan

Initiator
Other

Other
Other
Other
Other
Other
Other
Other
Other
Other

Nthar

|

Size

4.0KB
4.0KB
451B
27KB
452B
453 B
4548
451B
451B
450B

ARD R

Time

13.25's
13.25s
13.25s
13.25s
13.25s
557 ms
696 ms
790 ms
Pending
Pending

Dandin~

Waterfall

JavaScript event loop

Note: see talk!

(For a perfectly great talk on this, see Philip Roberts' talk:
https://www.voutube.com/watch?v=8aGhZQkoFbQ

And for a perfectly great deep dive on this, see Jake
Archibald's blog post:
https://jakearchibald.com/2015/tasks-microtasks-qgueues-a

nd-schedules/
https://www.youtube.com/watch?v=cCOL7MCA4PIO

These slides are inspired by these resources!

https://www.youtube.com/watch?v=8aGhZQkoFbQ&t=1s
https://jakearchibald.com/2015/tasks-microtasks-queues-and-schedules/
https://jakearchibald.com/2015/tasks-microtasks-queues-and-schedules/
https://www.youtube.com/watch?v=cCOL7MC4Pl0

setTimeout

To help us understand the event loop better, let's learn
about a new command, setTimeout:

setTimeout (function, delay);

- function will fire after delay milliseconds
- CodePen example

https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/setTimeout
https://codepen.io/bee-arcade/pen/71f9ef4daa698d0f5c80bae1fa100c1e?editors=1010

Call stack + setTimeout

Call Stack

function onTimerDone() {
console.log('Point C');
const hl = document.querySelector('hl');
hl.textContent '"loaded’ ;

}

console.log('Point A');
setTimeout(onTimerDone, 3000);
console.log('Point B');

(global function)

Call stack + setTimeout

Call Stack

function onTimerDone() {
console.log('Point C');
const hl = document.querySelector('hl');
hl.textContent '"loaded’ ;

}

console.log('Point A');
setTimeout(onTimerDone, 3000);
console.log('Point B');

(global function)

Call stack + setTimeout

function onTimerDone() {
console.log('Point C');
const hl = document.querySelector('hl');
hl.textContent '"loaded’ ;

}

console.log('Point A');
setTimeout(onTimerDone, 3000);
console.log('Point B');

Call Stack

console.log('Point A');

(global function)

Call stack + setTimeout

Call Stack

function onTimerDone() {
console.log('Point C');
const hl = document.querySelector('hl');
hl.textContent '"loaded’ ;

}

console.log('Point A');
setTimeout(onTimerDone, 3000);
console.log('Point B');

(global function)

Call stack + setTimeout

function onTimerDone() {
console.log('Point C');
const hl = document.querySelector('hl');
hl.textContent '"loaded’ ;

}

console.log('Point A');
setTimeout(onTimerDone, 3000);
console.log('Point B');

Call Stack

setTimeout(...);

(global function)

Call stack + setTimeout

Call Stack

function onTimerDone() {
console.log('Point C');
const hl = document.querySelector('hl');
hl.textContent '"loaded’ ;

}

console.log('Point A');
setTimeout(onTimerDone, 3000);
console.log('Point B');

(global function)

Call stack + setTimeout

function onTimerDone() {
console.log('Point C');
const hl = document.querySelector('hl');
hl.textContent '"loaded’ ;

}

console.log('Point A');
setTimeout(onTimerDone, 3000);
console.log('Point B');

Call Stack

console.log('Point B');

(global function)

Call stack + setTimeout

Call Stack

function onTimerDone() {
console.log('Point C');
const hl = document.querySelector('hl');
hl.textContent '"loaded’ ;

}

console.log('Point A');
setTimeout(onTimerDone, 3000);
console.log('Point B');

(global function)

Call stack + setTimeout

Call Stack

function onTimerDone() {
console.log('Point C');
const hl = document.querySelector('hl');
hl.textContent '"loaded’ ;

}

console.log('Point A');
setTimeout(onTimerDone, 3000);
console.log('Point B');

Call stack + setTimeout

Call Stack

function onTimerDone() {
-console.log('Point ')

const hl = document.querySelector('hl');
hl.textContent '"loaded’ ;

}

console.log('Point A');
setTimeout(onTimerDone, 3000);
console.log('Point B');

onTimerDone()

Call stack + setTimeout

function onTimerDone() {
»console.log('Point s

const hl = document.querySelector('hl');
hl.textContent '"loaded’ ;

}

console.log('Point A');
setTimeout(onTimerDone, 3000);
console.log('Point B');

Call Stack

console.log('Point C');

onTimerDone()

Call stack + setTimeout

Call Stack

function onTimerDone() {
console.log('Point C');
const hl = document.querySelector('hl');
hl.textContent '"loaded’ ;

}

console.log('Point A');
setTimeout(onTimerDone, 3000);
console.log('Point B');

onTimerDone()

Call stack + setTimeout

function onTimerDone() {
console.log('Point C');
const hl = document.querySelector('hl');
hl.textContent '"loaded’ ;

}

console.log('Point A');
setTimeout(onTimerDone, 3000);
console.log('Point B');

Call Stack

querySelector('hl');

onTimerDone()

Call stack + setTimeout

Call Stack

function onTimerDone() {
console.log('Point C');
const hl = document.querySelector('hl');
m hl.textContent = 'loaded';

}

console.log('Point A');
setTimeout(onTimerDone, 3000);
console.log('Point B');

onTimerDone()

Call stack + setTimeout

Call Stack

function onTimerDone() {
console.log('Point C');
const hl = document.querySelector('hl');
hl.textContent '"loaded’ ;

mp

console.log('Point A');
setTimeout(onTimerDone, 3000);
console.log('Point B');

onTimerDone()

Call stack + setTimeout

Call Stack

function onTimerDone() {
console.log('Point C');
const hl = document.querySelector('hl');
hl.textContent '"loaded’ ;

}

console.log('Point A');
setTimeout(onTimerDone, 3000);
console.log('Point B');

Call stack + setTimeout

}

function onTimerDone() {

console.log('Point C');
const hl = document.querySelector('hl');
hl.textContent 'loaded’ ;

console.log('Point A');
setTimeout(onTimerDone, 3000);
console.log('Point B');

What "enqueues”" onTimerDone?

How does it get fired?

Call Stack

setTimeout(...);

(global function)

Tasks, Micro-tasks,
and the Event Loop

Tasks and the Event Loop

Call Stack
The JavaScript runtime can do only
one thing at a time...
setTimeout()
(global function)

Tasks and the Event Loop

Call Stack

setTimeout()

(global function)

But the JS runtime runs within a browser, which can do
multiple things at a time.

Call Stack

setTimeout()

(global function)

Event
loop

o

Browser internal
implementation

Task Queue

Micro-task queue

Here's a picture of the major pieces involved in executing
JavaScript code in the browser.

JS execution

Browser internal
Call Stack implementation

setTimeout() Task Queue
Event

loop

r’ Micro-task queue

(global function)

- Call stack: JavaScript runtime call stack. Executes the JavaScript
commands, functions.

- Browser internal implementation: The C++ code that executes
in response to native JavaScript commands, e.g. setTimeout,
element.classlList.add('style"'), etc.

JS execution

@
Browser internal
Call Stack implementation
setTimeout() Task Queue
(global function) Event
_ loop
0 Micro-task queue

- Task Queue: When the browser internal implementation
notices a callback from something like setTimeout or
addEventListener is should be fired, it creates a Task and
enqueues it in the Task Queue

JS execution

@
Browser internal
Call Stack implementation
setTimeout() Task Queue
(global function) Event
_ loop
0 Micro-task queue

- Micro-task Queue: Promises are special tasks that execute with
higher priority than normal tasks, so they have their own
special queue. (see details here)

https://jakearchibald.com/2015/tasks-microtasks-queues-and-schedules/

JS execution

@
Browser internal
Call Stack implementation
setTimeout() Task Queue
(global function) Event
_ loop

0 Micro-task queue

Event loop: Processes the task queues.
- When the call stack is empty, the event loop pulls the next task
from the task queues and puts it on the call stack.
- The Micro-task queue has higher priority than the Task Queue.

emo

Philip Roberts wrote a nice visualizer for the JS event loop:
- setTimeout
- With click

http://latentflip.com/loupe/?code=Cgpjb25zb2xlLmxvZygiUGFydCBBIik7CgpzZXRUaW1lb3V0KGZ1bmN0aW9uIHRpbWVvdXQoKSB7CiAgICBjb25zb2xlLmxvZygiUGFydCBDIik7Cn0sIDUwMDApOwoKY29uc29sZS5sb2coIlBhcnQgQSIpOw%3D%3D!!!PGJ1dHRvbj5DbGljayBtZSE8L2J1dHRvbj4%3D
http://latentflip.com/loupe/?code=JC5vbignYnV0dG9uJywgJ2NsaWNrJywgZnVuY3Rpb24gb25DbGljaygpIHsKICAgIHNldFRpbWVvdXQoZnVuY3Rpb24gdGltZXIoKSB7CiAgICAgICAgY29uc29sZS5sb2coJ1lvdSBjbGlja2VkIHRoZSBidXR0b24hJyk7ICAgIAogICAgfSwgMjAwMCk7Cn0pOwoKY29uc29sZS5sb2coIkhpISIpOwoKc2V0VGltZW91dChmdW5jdGlvbiB0aW1lb3V0KCkgewogICAgY29uc29sZS5sb2coIkNsaWNrIHRoZSBidXR0b24hIik7Cn0sIDUwMDApOwoKY29uc29sZS5sb2coIldlbGNvbWUgdG8gbG91cGUuIik7!!!PGJ1dHRvbj5DbGljayBtZSE8L2J1dHRvbj4%3D

