
Interactive Web
Programming

1st semester of 2021

Murilo Camargos
(murilo.filho@fgv.br)

Heavily based on Victoria Kirst slides

https://web.stanford.edu/class/archive/cs/cs193x/cs193x.1176/lectures/

Schedule

Today:

- Querying REST APIs

- Form submission

- Fetch API gotchas

- CORS and Closures

- Single-threaded asynchrony

- JS Event loop

Next:

- D3 lib!

HW4 is out! Due May 11.

https://murilocamargos.github.io/iwp/homework/4-info-fetch

JSON

JavaScript Object Notation

JSON: Stands for JavaScript Object Notation

- Created by Douglas Crockford

- Defines a way of serializing JavaScript objects

- to serialize: to turn an object into a string that can

be deserialized

- to deserialize: to turn a serialized string into an

object

Fetch API and JSON

The Fetch API also has built-in support for JSON:

function onJsonReady(json) {

 console.log(json);

}

function onResponse(response) {

 return response.json();

}

fetch('images.json')

 .then(onResponse)

 .then(onJsonReady);

Return
response.json()
instead of
response.text()
and Fetch will
essentially call
JSON.parse() on the
response string.

Querying REST APIs

Why APIs?

- Simple and standardized to

access resources.

- It can be easily scalable.

- It offers more security

through isolation.

https://samnewman.io/patterns/architectural/bff/

https://samnewman.io/patterns/architectural/bff/

RESTful API

RESTful API: URL-based API that has these properties:

- Requests are sent as an HTTP request:

- HTTP Methods: GET, PUT, POST, DELETE, etc

- Requests are sent to base URL, also known as an "API

Endpoint"

- Simple and standardized

- Always use HTTP protocol and methods

- Scalable and stateless

- Don’t have to synchronize data state across front

and back-ends.

- Good performance with caching

https://en.wikipedia.org/wiki/Representational_state_transfer#Applied_to_Web_services
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

RESTful API example

Let’s say we have an Ice Cream Shop website that allows the

user to see the available flavors and the manager to change

that information.

The API can be accessed at https://www.icecream.com/api/

RESTful API example

Request

Header

Method Endpoint

Params/Body

Response

Header Status

Body (bytes, text, json)

We would like to
perform CRUD
operations:

Operation HTTP method

Create POST

Read GET

Update PUT

Delete DELETE

RESTful API example

Request

Header

Auth data

Method

GET

Endpoint

/flavors

Params/Body

Response

Header Status

200

Body (bytes, text, json)

[{“id”: 1, “name”:
“strawberry”},

{“id”: 2, “name”:
“vanilla”}]

If we want to read the list of available flavors:

RESTful API example

Request

Header

Auth data

Method

GET

Endpoint

/flavors/1

Params/Body

Response

Header Status

200

Body (bytes, text, json)

{“id”: 1, “name”:
“strawberry”}

We can also get a specific flavor

RESTful API example

Request

Header

Auth data

Method

PUT

Endpoint

/flavors/1

Params/Body

{“name”: “banana”}

Response

Header Status

200

Body (bytes, text, json)

{“id”: 1, “name”:
“banana”}

Let’s say we want to change a flavor’s name

RESTful API example

Request

Header

Auth data

Method

POST

Endpoint

/flavors

Params/Body

{“name”: “lemon”}

Response

Header Status

201

Body (bytes, text, json)

{“id”: 3, “name”:
“lemon”}

Let’s say we want to create a new flavor

RESTful API example

Request

Header

Auth data

Method

DELETE

Endpoint

/flavors/2

Params/Body

Response

Header Status

204

Body (bytes, text, json)

We can also delete a resource using DELETE HTTP method

RESTful API

Almost every website on the internet uses RESTful URLs /

RESTful APIs to handle requests to its servers.

Notable alternatives to REST:

- GraphQL,

- Used by Facebook since 2012

- Open-sourced by Facebook since 2015

- Still early but some big clients: GitHub, Pinterest

- Falcor?

- Netflix's REST alternative, introduced ~2015

- Probably cool but never hear of anyone using it

- Doesn't even have a Wikipedia page

http://graphql.org/
https://netflix.github.io/falcor/

Using REST APIs

3rd-Party APIs

Many websites expose REST APIs to outside developers.

These are often called "3rd-party APIs" or "Developer APIs"

Examples:

- Spotify

- Giphy

- GitHub

- Hoards of Google APIs

- Facebook

- Instagram

- Twitter

- etc...

Try Googling

"<product name> API"

to see if one exists for

a given company!

Example: TVMaze

TVMaze has a REST API that external developers (i.e. people

who aren't TVMaze employees) can query:

https://www.tvmaze.com/api

Example: TVMaze

REST API structure (details):

- The Base URL is https://api.tvmaze.com

- The HTTP method is GET

- The API endpoint to query is:
https://api.tvmaze.com/search/shows?q=:query

- It returns JSON data about the album that's requested

https://www.tvmaze.com/api#show-search

Example: TVMaze

If we had a TV Show name “The Witcher”, how would we

make a GET request for the album information?

REST API structure (details):

- The Base URL is https://api.tvmaze.com

- The HTTP method is GET

- The API endpoint to query is:
https://api.tvmaze.com/search/shows?q=:query

- It returns JSON data about the album that's requested

https://www.tvmaze.com/api#show-search

GET request: Browse to URL

Loading a URL in a browser issues an HTTP GET request for

that resource.

So if we just piece together this URL:

- API Endpoint:
https://api.tvmaze.com/search/shows?q=The Witcher

- Query: The Witcher

- Request URL:
https://api.tvmaze.com/search/shows?q=The Witcher

If you click on the link, you see it returns a JSON object.

https://api.tvmaze.com/search/shows?q=The

GET request: fetch()

Actually, the fetch() API also issues an HTTP GET request

by default.

So if we do:

fetch('https://api.tvmaze.com/search/shows?q=The

Witcher')

 .then(onResponse)

 .then(onTextReady);

...we can load the JSON data as a JavaScript object, as we

did with our .json files!

(CodePen)

https://codepen.io/murilocamargos/pen/LYxJrXv?editors=1111

Shows example

Let's write a web page that asks the user to enter a search

query, then displays the found tv shows

TVMaze search API

TVMaze Search URL:
https://api.tvmaze.com/search/shows?q=query

E.g.

https://api.tvmaze.com/search/shows?q=The Witcher

Q: Hey, what's that at the end of the URL?

- ?q=The Witcher

https://api.tvmaze.com/search/shows?q=The
https://api.spotify.com/v1/search?type=album&q=query
https://api.tvmaze.com/search/shows?q=The

Query parameters

You can pass parameters to HTTP GET requests by adding

query parameters to the URL:

?q=The Witcher¶m2=...

- Defined as key-value pairs

- param=value

- The first query parameter starts with a ?

- Subsequent query parameters start with &

Reminder: HTML elements

Single-line text input:

In JavaScript, you can read and set the input text via
inputElement.value

Some other input types:
- Select
- Textarea
- Checkbox

https://codepen.io/bee-arcade/pen/963ae17d61f828a7b5c321c148b84e40?editors=1011
https://codepen.io/bee-arcade/pen/bd301158f62a54e40eea37da1aff0d7a?editors=1011
https://codepen.io/bee-arcade/pen/714933b816bf4f91a6ae4ab8eba6b649?editors=1011

Form submit

Q: What if you want the form to submit after you click
"enter"?

Form submit

1. Wrap your input elements in a <form>

You should also use <input type="submit"> instead of

<button> for the reason on the next slide...

Form submit

2. Listen for the 'submit' event on the form element:

This is why you want to use <input type="submit">

instead of <button> -- the 'submit' event will fire on click

for but not <button>.

Form submit

3. Prevent the default action before handling the event

through event.preventDefault():

The page will refresh on submit unless you explicitly

prevent it.

Show search example

Solution: GitHub / Demo

https://github.com/murilocamargos/iwp/tree/main/pages/tvmaze-search
https://murilocamargos.github.io/iwp/pages/tvmaze-search/

Other REST APIs

Giphy API

https://github.com/Giphy/GiphyAPI#search-endpoint

https://github.com/Giphy/GiphyAPI#search-endpoint

Yelp API

https://www.yelp.com/developers/documentation/v3/business_search

https://www.yelp.com/developers/documentation/v3/business_search

Fetch gotchas

CORS error

If you try to fetch() this JSON file:

https://web.stanford.edu/class/archive/cs/cs193x/cs193x.1176/l

ectures/18/albums.json

You get this error:

Q: Why do we get this error, when the JSON file is served over

HTTP?

https://web.stanford.edu/class/archive/cs/cs193x/cs193x.1176/lectures/18/albums.json
https://web.stanford.edu/class/archive/cs/cs193x/cs193x.1176/lectures/18/albums.json

CORS

CORS: Cross-Origin Resource Sharing (wiki)

- Browser policies for what resources a web page can load

- Cross-origin: between two different domains

- If abc.com/users requests something from

abc.com/search, it's still a same-origin request (not

cross-origin) because it's the same domain

- But if abc.com/foo requests something from

xyz.com/foo, it's a cross-origin request.

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

CORS summarized

- You can make same-origin requests by default for any

request type

- You can make cross-origin requests by default for:

- Images loaded via

- CSS files loaded via <link>

- JavaScript files loaded via <script>

- Etc

- You cannot make cross-origin requests by default for:

- Resources loaded via fetch() or XHR

CORS configuration

However, a web server can be configured to override these

default rules:

- If you want to allow other domains to make fetch()

requests to your servers, you can configure your server to

allow them (e.g. on apache)

- All 3rd party APIs do this, otherwise you couldn't

access them

- If you don't want other domains to certain resources such

as images, you can disallow them

https://enable-cors.org/server_apache.html

In this class

In IWP, we will either be:

- Making same-origin requests

- Making requests on APIs that have allowed cross-origin

access

So you don't need to do anything with CORS for IWP.

Still, CORS is good to know about:

- Helps you understand error messages

- You may have to deal with this in the future (common

scenario: file:// trying to access an HTTP resource: HTTP

resource must allow CORS for this to be allowed)

Fetch and closures

What if instead of

code like this in a

class: (CodePen)

https://codepen.io/bee-arcade/pen/1169a5760153ee5f6877a8b6f7c30521

Fetch and closures

We wrote code that

looked like this, where

onResponse and

onJsonReady were

inner functions

(CodePen):

https://codepen.io/bee-arcade/pen/3d4ed6fa883f6083a5bca5ed82dc7958

Fetch and closures

Even if we bind loadAlbums:

We get this error (CodePen):

https://codepen.io/bee-arcade/pen/3d4ed6fa883f6083a5bca5ed82dc7958

Closures and this

Every function has its own

"this" argument,

meaning closures (inner

functions) also have their

own "this" arguments...

Closures and this

So even if you've bound

the this value for

loadAlbums, it doesn't

bind the this value for

the closures. x

Solution 1: Bind explicitly

You can bind the closures

to the this value of

loadAlbums when it is

called: (CodePen)

https://codepen.io/bee-arcade/pen/6a78f5ac00adf2e395d9ddadf97ccc7f

Solution 2: Bind with =>

Functions defined with

the arrow syntax are

auto-bound to the "this"

of their enclosing

context (CodePen):

https://codepen.io/bee-arcade/pen/772fbda2e53f053052a6065623ddec5d

Solution 2: Bind with =>

We can also use the

concise syntax:

Single-threaded asynchrony

Recall: Discography page

We wrote a web page that lists the Mariah Carey albums

stored in albums.json and lets us sort the albums:

(CodePen / demo)

https://yayinternet.github.io/lecture17/oo-albums/albums.json
https://codepen.io/bee-arcade/pen/1169a5760153ee5f6877a8b6f7c30521
https://codepen.io/bee-arcade/live/1169a5760153ee5f6877a8b6f7c30521

Error?!

If we click on one of the buttons before the albums load,

we get an error:

Why?!

On page load

App albums.jsonscript.js

When we first load the page, the following things happen

immediately:

SortButton

1. Script

creates

App

2. App creates

SortButtons

3. App requests

albums.json through

fetch()

On page load

App albums.jsonscript.js

When the fetch() finishes, the app creates an Album

object for each album that was fetched:

Album

4. fetch() finishes
5. App creates

Album objects

Before fetch() returns

App albums.jsonscript.js

However, before the fetch() completes, a user might click

the sort button:

SortButton

Click event!

 "App, you should sort

your album data"

fetch() is still

pending

The albumInfo field is

filled out after the

fetch() from

loadAlbums() returns

But if the button is

clicked before

fetch() returns,

albumInfo is not

defined yet and we

get an error.

Asynchronous events

App albums.jsonscript.js

SortButton

Click event!

Fetch
finishes!

We have written our code in a way that assumes fetch()

will complete before clicking, but on a slow connection,

that's not a safe assumption.

General problem

The problem stated generically:

- There are 2+ events that can occur at unpredictable

times, and the two events are dependent on each other

in some way

(Some people call this a "race condition", though other

people reserve the term for multiple threads only.)

Click
event!

Fetch
finishes!

Solutions

You can either "force" loading to occur before button click,

for example:

- Disable buttons until the JSON loads

- OR: Don't show buttons until the JSON loads

- OR: Don't show the UI at all until the JSON completes

Don't show buttons until JSON is loaded ready: CodePen

https://codepen.io/bee-arcade/pen/102188e13d89fe35cf69fa480f682f5e?editors=1111

Solutions

Or you can make the button event handler work

independent of the fetch call

- Initialize albumInfo to an empty array in the

constructor

- Sorting nothing does nothing, which is fine

CodePen

https://codepen.io/bee-arcade/pen/9d293c5c757e5d74fd7f615b3ef7a574

Single-threaded asynchrony

Is it possible for the

_onJsonReady function

to fire *in the middle* of

sortAlbums?

The browser is

fetching

albums.json...

...

User clicks a

button, so the

event handler is

running

...

Is it possible that while

the click handler is still

running (still on the call

stack), the fetch()

callback also fires?

...

The answer is No,

because JavaScript is

single-threaded.

...

Single-threaded?

Some hand-wavy definitions:

- Single-threaded:

- When your computer processes one command at a

time

- There is one call stack

- Multi-threaded

- When your computer processes multiple commands

simultaneously

- There is one call stack per thread

thread: a linear sequence of instructions; an executable

container for instructions

Single-threaded JS

- We create a new Album for each album in the JSON file

- For each album, we create a new DOM Image

Q: If in JavaScript, only one

thing happens at a time,

does that mean only one

image loads at a time?

Image loading

Empirically, that doesn't seem to be the case:

Network tab

If we look at Chrome's Network tab, we see there are

several images being loaded simultaneously:

Q: If JavaScript is single-threaded, i.e. if only one thing

happens at a time, how can images be loaded in parallel?

JavaScript event loop

Note: see talk!

(For a perfectly great talk on this, see Philip Roberts' talk:

https://www.youtube.com/watch?v=8aGhZQkoFbQ

And for a perfectly great deep dive on this, see Jake

Archibald's blog post:

https://jakearchibald.com/2015/tasks-microtasks-queues-a

nd-schedules/

https://www.youtube.com/watch?v=cCOL7MC4Pl0

These slides are inspired by these resources!

https://www.youtube.com/watch?v=8aGhZQkoFbQ&t=1s
https://jakearchibald.com/2015/tasks-microtasks-queues-and-schedules/
https://jakearchibald.com/2015/tasks-microtasks-queues-and-schedules/
https://www.youtube.com/watch?v=cCOL7MC4Pl0

setTimeout

To help us understand the event loop better, let's learn

about a new command, setTimeout:

setTimeout(function, delay);

- function will fire after delay milliseconds

- CodePen example

https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/setTimeout
https://codepen.io/bee-arcade/pen/71f9ef4daa698d0f5c80bae1fa100c1e?editors=1010

Call stack + setTimeout

Call Stack

(global function)

Call stack + setTimeout

Call Stack

(global function)

Call stack + setTimeout

Call Stack

console.log('Point A');

(global function)

Call stack + setTimeout

Call Stack

(global function)

Call stack + setTimeout

Call Stack

setTimeout(...);

(global function)

Call stack + setTimeout

Call Stack

(global function)

Call stack + setTimeout

Call Stack

console.log('Point B');

(global function)

Call stack + setTimeout

Call Stack

(global function)

Call stack + setTimeout

Call Stack

Call stack + setTimeout

Call Stack

onTimerDone()

Call stack + setTimeout

Call Stack

onTimerDone()

console.log('Point C');

Call stack + setTimeout

Call Stack

onTimerDone()

Call stack + setTimeout

Call Stack

onTimerDone()

querySelector('h1');

Call stack + setTimeout

Call Stack

onTimerDone()

Call stack + setTimeout

Call Stack

onTimerDone()

Call stack + setTimeout

Call Stack

Call stack + setTimeout

Call Stack

setTimeout(...);

(global function)

What "enqueues" onTimerDone?
How does it get fired?

Tasks, Micro-tasks,
and the Event Loop

Tasks and the Event Loop

Call Stack

(global function)

The JavaScript runtime can do only
one thing at a time...

setTimeout()

Tasks and the Event Loop

Call Stack

(global function)

setTimeout()

But the JS runtime runs within a browser, which can do
multiple things at a time.

Call Stack

(global function)

setTimeout()

Here's a picture of the major pieces involved in executing
JavaScript code in the browser.

Browser internal
implementation

Event
loop

Task Queue

Micro-task queue

JS execution

- Call stack: JavaScript runtime call stack. Executes the JavaScript

commands, functions.

- Browser internal implementation: The C++ code that executes

in response to native JavaScript commands, e.g. setTimeout,

element.classList.add('style'), etc.

JS execution

- Task Queue: When the browser internal implementation

notices a callback from something like setTimeout or

addEventListener is should be fired, it creates a Task and

enqueues it in the Task Queue

JS execution

- Micro-task Queue: Promises are special tasks that execute with

higher priority than normal tasks, so they have their own

special queue. (see details here)

https://jakearchibald.com/2015/tasks-microtasks-queues-and-schedules/

JS execution

Event loop: Processes the task queues.

- When the call stack is empty, the event loop pulls the next task

from the task queues and puts it on the call stack.

- The Micro-task queue has higher priority than the Task Queue.

Demo

Philip Roberts wrote a nice visualizer for the JS event loop:

- setTimeout

- With click

http://latentflip.com/loupe/?code=Cgpjb25zb2xlLmxvZygiUGFydCBBIik7CgpzZXRUaW1lb3V0KGZ1bmN0aW9uIHRpbWVvdXQoKSB7CiAgICBjb25zb2xlLmxvZygiUGFydCBDIik7Cn0sIDUwMDApOwoKY29uc29sZS5sb2coIlBhcnQgQSIpOw%3D%3D!!!PGJ1dHRvbj5DbGljayBtZSE8L2J1dHRvbj4%3D
http://latentflip.com/loupe/?code=JC5vbignYnV0dG9uJywgJ2NsaWNrJywgZnVuY3Rpb24gb25DbGljaygpIHsKICAgIHNldFRpbWVvdXQoZnVuY3Rpb24gdGltZXIoKSB7CiAgICAgICAgY29uc29sZS5sb2coJ1lvdSBjbGlja2VkIHRoZSBidXR0b24hJyk7ICAgIAogICAgfSwgMjAwMCk7Cn0pOwoKY29uc29sZS5sb2coIkhpISIpOwoKc2V0VGltZW91dChmdW5jdGlvbiB0aW1lb3V0KCkgewogICAgY29uc29sZS5sb2coIkNsaWNrIHRoZSBidXR0b24hIik7Cn0sIDUwMDApOwoKY29uc29sZS5sb2coIldlbGNvbWUgdG8gbG91cGUuIik7!!!PGJ1dHRvbj5DbGljayBtZSE8L2J1dHRvbj4%3D

