
Interactive Web
Programming

1st semester of 2021

Murilo Camargos
(murilo.filho@fgv.br)

Heavily based on Victoria Kirst slides

https://web.stanford.edu/class/archive/cs/cs193x/cs193x.1176/lectures/

Schedule

Today:

- Servers, generally

- NodeJS

- npm

- Express

- fetch() to localhost

Lecture code

All lecture code is in this git repository:

https://github.com/yayinternet/lecture19

You will need to run the commands we show in lecture to

run the server code!

Node installation instructions:

https://murilocamargos.github.io/iwp/install-node/

https://github.com/yayinternet/lecture19
https://murilocamargos.github.io/iwp/install-node/

Servers

Server-side programming

The type of web programming we have been doing so far is

called "client-side" programming:

- The code we write gets run in a browser on the user's

(client's) machine

Today we will begin to learn about server-side

programming:

- The code we write gets run on a server.

- Servers are computers that run programs to generate

web pages and other web resources.

Let's take another look
at how clients and servers work...

CLIENT: You type a URL in
the address bar and hit

"enter"

https://murilocamargos.github.io/iwp/

Browser sends an HTTP GET request saying
"Please GET me the index.html file at

https://murilocamargos.github.io/iwp/"

Let's take a deeper
look at this process...

Browser C++ code creates an
array of bytes that is formatted in

using HTTP request message
format

Browser asks operating system, "Hey, can
you send this HTTP Get request message

to
https://murilocamargos.github.io/iwp/"?

https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages
https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages
https://murilocamargos.github.io/iwp/

DNS
Server

Operating system sends
a DNS query to look up

the IP
address of

"https://murilocamargo
s.github.io/iwp/"

DNS server replies with the
IP address, e.g.
171.67.215.200

(Routing,
etc…)

- DNS: Domain Name System: Translate domain names to IP
address of the computer associated with that address.

- IP address: Numerical unique identifier for every computer
connected to the internet.

https://murilocamargos.github.io/iwp/
https://murilocamargos.github.io/iwp/

171.67.21
5.200

Operating system
opens a TCP

connection with the
computer at

171.67.215.200 (Routing,
etc…)

- TCP: Transmission Control Protocol, defines the data
format for sending information over the wire. (Can be
used for HTTP, FTP, etc)

After the TCP connection is
established, the OS can send the
HTTP message to 171.67.215.200

through the TCP connection.

SERVER: There is a computer that is connected to the
internet at IP address 171.67.215.200.

171.67.215.200

(Routing,
etc…)

On this computer is a web server program:

- The web server program is listening for
incoming messages that are sent to it.

- The web server program can respond to
messages that are sent to it.

Node: The platform we will use to create a web
server program that will receive and respond to
HTTP requests.

- Also known as "NodeJS"; these terms are
synonyms

171.67.215.200

Aside: "Server"

The definition of server is overloaded:

- Sometimes "server" means the machine/computer that

runs the server software.

- Sometimes "server" means the software running on the

machine/computer.

You have to use context to know which is being meant.

Aside: Sockets

Q: What does it mean for a program to be "listening" for
messages?

When the server first runs, it executes code to create a
socket that allows it to receive incoming messages from the
OS.

A socket is one end of a communication channel. You can
send and receive data on sockets.

However, NodeJS will abstract this away so we don't have
to think about sockets.

https://en.wikipedia.org/wiki/Network_socket

A TCP connection is established between the client and
the server, so now the client and server can send

messages directly to teach other.

171.67.215.200

(Routing,
etc…)

Client

Server

Now the operating system is receiving TCP packets from
the wire, and the operating system begins sending the

contents of the request to the server program.

171.67.215.200

OS to server program:
"Hey, here's a message that
was sent to me."

The server software parses the HTTP request and then
decides what message it wants to send in response. It

formats this message in HTTP, then asks the OS to send
this response message over TCP back to the sender.

171.67.215.200

OS to server program:
"Hey, here's a message that
was sent to me."

Server program to OS:
"OK, can you send this message
back to the client?"

This HTTP response is then sent
back to the client's OS, which

notifies the browser of the
HTTP response, and then the

browser displays the web page.

(Routing,
etc…)

Summary

When you navigate to a URL:

- Browser creates an HTTP GET request

- Operating system sends the GET request to the server over TCP

When a server computer receives a message:

- The server's operating system sends the message to the server

software (via a socket)

- The server software then parses the message

- The server software creates an HTTP response

- The server OS sends the HTTP response to the client over TCP

Client

(Routing,
etc…)

Server

NodeJS

NodeJS

NodeJS:

- A JavaScript runtime written in C++.

- Can interpret and execute JavaScript.

- Includes support for the NodeJS API.

NodeJS API:

- A set of JavaScript libraries that are useful for creating

server programs.

V8 (from Chrome):

- The JavaScript interpreter ("engine") that NodeJS uses

to interpret, compile, and execute JavaScript code

NodeJS

NodeJS:

- A JavaScript runtime written in C++.

- Can interpret and execute JavaScript.

- Includes support for the NodeJS API.

NodeJS API:

- A set of JavaScript libraries that are useful for creating

server programs.

V8 (from Chrome):

- The JavaScript interpreter ("engine") that NodeJS uses

to interpret, compile, and execute JavaScript code

Q: What does
this mean?

First: Chrome

Chrome:

- A browser written in C++.

- Can interpret and execute JavaScript code.

- Includes support for the DOM APIs.

DOM APIs:

- JavaScript libraries to interact with a web page

V8:

- The JavaScript interpreter ("engine") that Chrome uses

to interpret, compile, and execute JavaScript code

Chrome, V8, DOM

DOM API
Implementation

JavaScript
runtime
(Call stack,

memory, etc.)

Parser

Garbage
Collector

Execution
Engine

DOM API
Implementation

const name = 'V8';

JavaScript
runtime
(Call stack,

memory, etc.)

Parser

Garbage
Collector

Execution
Engine

DOM API
Implementation

console.log('V8');

JavaScript
runtime
(Call stack,

memory, etc.)

Parser

Garbage
Collector

Execution
Engine

"Please execute
console.log()"

NodeJS, V8, NodeJS APIs

NodeJS API
Implementation

JavaScript
runtime
(Call stack,

memory, etc.)

Parser

Garbage
Collector

Execution
Engine

NodeJS API
Implementation

const x = 15;
x++;

JavaScript
runtime
(Call stack,

memory, etc.)

Parser

Garbage
Collector

Execution
Engine

NodeJS API
Implementation

http.createServer();

JavaScript
runtime
(Call stack,

memory, etc.)

Parser

Garbage
Collector

Execution
Engine

"Please execute
http

.createServer()"

NodeJS API
Implementation

JavaScript
runtime
(Call stack,

memory, etc.)

Parser

Garbage
Collector

Execution
Engine

What if you tried to call
document.querySelector('div');

in the NodeJS runtime?

NodeJS API
Implementation

document.querySelector('div');
ReferenceError: document is not defined

JavaScript
runtime
(Call stack,

memory, etc.)

Parser

Garbage
Collector

Execution
Engine

NodeJS API
Implementation

What if you tried to call console.log('nodejs');
in the NodeJS runtime?

JavaScript
runtime
(Call stack,

memory, etc.)

Parser

Garbage
Collector

Execution
Engine

NodeJS API
Implementation

console.log('nodejs');

(NodeJS API implemented their own console.log)

JavaScript
runtime
(Call stack,

memory, etc.)

Parser

Garbage
Collector

Execution
Engine

"Please execute
console.log()"

https://nodejs.org/api/console.html#console_console_log_data_args

NodeJS

NodeJS:

- A JavaScript runtime written in C++.

- Can interpret and execute JavaScript.

- Includes support for the NodeJS API.

NodeJS API:

- A set of JavaScript libraries that are useful for creating

server programs.

V8 (from Chrome):

- The JavaScript interpreter ("engine") that NodeJS uses

to interpret, compile, and execute JavaScript code

Installation

NOTE: The following slides assume you have already

installed NodeJS.

NodeJS installation instructions:

- https://murilocamargos.github.io/iwp/install-node/

https://murilocamargos.github.io/iwp/install-node/

node command

Running node without a filename runs a REPL loop

- Similar to the JavaScript console in Chrome, or when

you run "python"

$ node
> let x = 5;
undefined
> x++
5
> x
6

NodeJS

NodeJS can be used for writing scripts in JavaScript,

completely unrelated to servers.

simple-script.js

function printPoem() {
 console.log('Roses are red,');
 console.log('Violets are blue,');
 console.log('Sugar is sweet,');
 console.log('And so are you.');
 console.log();
}

printPoem();
printPoem();

node command

The node command can be used to execute a JS file:

$ node fileName

$ node simple-script.js
Roses are red,
Violets are blue,
Sugar is sweet,
And so are you.

Roses are red,
Violets are blue,
Sugar is sweet,
And so are you.

Node for servers

Here is a very basic server written for NodeJS:

(WARNING: We will not actually be writing servers like this!!!
We will be using ExpressJS to help, but we haven't gotten there yet.

require()

The NodeJS require() statement loads a module, similar

to import in Java or include in C++.

- We can require() modules included with NodeJS, or

modules we've written ourselves.

- In this example, 'http' is referring to the HTTP NodeJS

module

https://nodejs.org/api/http.html#http_server_listen_handle_callback
https://nodejs.org/api/http.html#http_server_listen_handle_callback

require()

The http variable returned by require('http') can be

used to make calls to the HTTP API:

- http.createServer() creates a Server object

https://nodejs.org/api/http.html#http_http_createserver_requestlistener

Emitter.on

The on() function is the NodeJS equivalent of

addEventListener.

https://nodejs.org/api/events.html#events_emitter_on_eventname_listener

Emitter.on

The request event is emitted each time there is a new

HTTP request for the NodeJS program to process.

Server

https://nodejs.org/api/http.html#http_event_request

Emitter.on

The req parameter gives information about the incoming

request, and the res parameter is the response parameter

that we write to via method calls.

- statusCode: Sets the HTTP status code.

- setHeader(): Sets the HTTP headers.

- end(): Writes the message to the response body then

signals to the server that the message is complete.

https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse
https://nodejs.org/api/http.html#http_response_statuscode
https://nodejs.org/api/http.html#http_response_setheader_name_value
https://nodejs.org/api/http.html#http_response_end_data_encoding_callback

listen() and listening

The listen() function will make the program start

accepting messages sent to the given port number.

- The listening event will be emitted when the server

has been bound to a port.

Q: What's a port? What is binding?

https://nodejs.org/api/net.html#net_server_listen_port_hostname_backlog_callback
https://nodejs.org/api/net.html#net_event_listening

Ports and binding

port: In the context of networking, a "logical" (as opposed

to a physical) connection place

- A number from 0 to 65535 (16-bit unsigned integer)

When you start running a server process, you tell the

operating system what port number to associate with it.

This is called binding.

171.67.21
5.200

Operating system
opens a TCP connection

on port 80
of the computer at

171.67.215.200. (Routing,
etc…)

A TCP connection requires an IP address
and a port number.
- If no port number is specified, 80 is

the default for HTTP requests.

The server process
running on port 80

Is responding to
requests.

Ports defaults

There are many well-known ports, i.e. the ports that will be
used by default for particular protocols:

21: File Transfer Protocol (FTP)
22: Secure Shell (SSH)
23: Telnet remote login service
25: Simple Mail Transfer Protocol (SMTP)
53: Domain Name System (DNS) service
80: Hypertext Transfer Protocol (HTTP) used in the World Wide Web
110: Post Office Protocol (POP3)
119: Network News Transfer Protocol (NNTP)
123: Network Time Protocol (NTP)
143: Internet Message Access Protocol (IMAP)
161: Simple Network Management Protocol (SNMP)
194: Internet Relay Chat (IRC)
443: HTTP Secure (HTTPS)

Development server

For our development server, we can choose whatever port

number we want. In this example, we've chosen 3000.

Running the server

When we run node server.js in the terminal, we see

the following:

The process does not end after we run the command, as it is

now waiting for HTTP requests on port 3000.

Q: How do we send an HTTP request on port 3000?

Localhost

We can send an HTTP GET request running on one of the

ports on the local computer using the URL:

http://localhost:portNumber, e.g.

http://localhost:3000

Localhost is a hostname that means "this computer."

http://localhost:3000
https://en.wikipedia.org/wiki/Localhost

Server response

Here is the result of the request to our HTTP server:

Node for servers

This server

returns the same

response no

matter what the

request is.

Node for servers

The NodeJS server APIs

are actually pretty

low-level:

- You build the

request manually

- You write the

response manually

- There's a lot of

tedious processing

code

ExpressJS

We're going to use a library called ExpressJS on top of

NodeJS:

Express routing

ExpressJS

However, Express is not part of the NodeJS APIs.

If we try to use it like this, we'll get an error:

We need to install Express via npm.

npm

When you install NodeJS, you also install npm:

- npm: Node Package Manager*:

Command-line tool that lets you install packages

(libraries and tools) written in JavaScript and

compatible with NodeJS

- Can find packages through the online repository:

https://www.npmjs.com/

https://www.npmjs.com/

npm install and uninstall

npm install package-name

- This downloads the package-name library into a

node_modules folder.

- Now the package-name library can be included in your

NodeJS JavaScript files.

npm uninstall package-name

- This removes the package-name library from the

node_modules folder, deleting the folder if necessary

Express example

$ npm install express

$ node server.js

Example app listening on port 3000!

Express routes

You can specify routes in Express:

https://expressjs.com/en/guide/routing.html

Express routes

app.method(path, handler)

- Specifies how the server should handle HTTP method

requests made to URL/path

- This example is saying:

- When there's a GET request to

http://localhost:3000/hello, respond with the text

"GET hello!"

http://localhost:3000/hello

Handler parameters

Express has its own Request and Response objects:

- req is a Request object

- res is a Response object

- res.send() sends an HTTP response with the given

content

- Sends content type "text/html" by default

http://expressjs.com/en/4x/api.html#req
http://expressjs.com/en/4x/api.html#res
http://expressjs.com/en/4x/api.html#res.send

Querying our server

Here are three ways to send HTTP requests to our server:

1. Navigate to http://localhost:3000/<path> in our browser

a. Can only do GET requests

2. Call fetch() in web page

a. We've done GET requests so far, but can send any type

of HTTP request

3. curl command-line tool

a. Debug tool we haven't seen yet

curl

curl: Command-line tool to send and receive data from a

server (Manual)

curl --request METHOD url

e.g.

$ curl --request PUT http://localhost:3000/hello

http://www.mit.edu/afs.new/sipb/user/ssen/src/curl-7.11.1/docs/curl.html

fetch() to localhost

We get this CORS error:

If we try fetching to localhost from file://

Server static data

We can instead serve our HTML/CSS/JS statically from the

same server:

GET query params in Express

Query parameters are saved in req.query.

GET query params in Express

fetch() with POST

On the server-side, you define your handler in

app.post() to handle POST requests.

fetch() with POST

fetch() with POST

Query params with POST

You can send query parameters via POST as well:

(WARNING: We will not be making POST requests like this!
We will be sending data in the body of the request instead of via query params.)

Query params with POST

These parameters are accessed the same way:

(WARNING: We will not be making POST requests like this!
We will be sending data in the body of the request instead of via query params.)

