
Interactive Web
Programming

1st semester of 2021

Murilo Camargos
(murilo.filho@fgv.br)

Heavily based on Victoria Kirst slides

https://web.stanford.edu/class/archive/cs/cs193x/cs193x.1176/lectures/

Schedule

Today:

- npm

- Express

- fetch() to localhost

- package.json

- Working on the last assignment!

- Will involve MongoDB and Authentication

Two weeks from now:

- Saving and retrieving data

- 01/06 No class

- 03/06 Holiday

Node installation; lecture code

NOTE: The following slides assume you have already

installed NodeJS.

NodeJS installation instructions:

- https://murilocamargos.github.io/iwp/install-node/

All lecture code is split between these gits repositories:

- https://github.com/yayinternet/lecture19

- https://github.com/yayinternet/lecture20

https://murilocamargos.github.io/iwp/install-node/
https://github.com/yayinternet/lecture19
https://github.com/yayinternet/lecture20

NodeJS

NodeJS

NodeJS:

- A JavaScript runtime written in C++.

- Can interpret and execute JavaScript.

- Includes support for the NodeJS API.

NodeJS API:

- A set of JavaScript libraries that are useful for creating

server programs.

V8 (from Chrome):

- The JavaScript interpreter ("engine") that NodeJS uses

to interpret, compile, and execute JavaScript code

node command

Running node without a filename runs a REPL loop

- Similar to the JavaScript console in Chrome, or when

you run "python"

$ node
> let x = 5;
undefined
> x++
5
> x
6

node command

The node command can be used to execute a JS file (GitHub):

$ node fileName

$ node simple-script.js
Roses are red,
Violets are blue,
Sugar is sweet,
And so are you.

Roses are red,
Violets are blue,
Sugar is sweet,
And so are you.

https://github.com/yayinternet/lecture19/blob/master/node-scripts/simple-script.js

Node for servers

server.js (GitHub):

https://github.com/yayinternet/lecture19/blob/master/node-server/server.js

Node for servers

Include the HTTP NodeJS

library

When the server gets a

request, send back "Hello

World" in plain text

When the server is

started, print a log

message

Start listening for

messages!

Node for servers

The NodeJS server APIs

are actually pretty

low-level:

- You build the

request manually

- You write the

response manually

- There's a lot of

tedious processing

code

ExpressJS

Node for servers

We're going to use a library called ExpressJS on top of

NodeJS. Here's our server code without Express (GitHub):

https://github.com/yayinternet/lecture19/blob/master/node-server/server.js

ExpressJS

And with Express (GitHub):

https://github.com/yayinternet/lecture19/blob/master/express-server/server.js

ExpressJS

Express is not part of the NodeJS APIs.

If we try to use it, we'll get an error:

We need to install Express via npm.

npm

When you install NodeJS, you also install npm:

- npm: Node Package Manager*:

Command-line tool that lets you install packages

(libraries and tools) written in JavaScript and

compatible with NodeJS

- Can find packages through the online repository:

https://www.npmjs.com/

*though the creators of "npm" say it's not an

 acronym (as a joke -_-)

https://www.npmjs.com/

npm install and uninstall

npm install package-name

- This downloads the package-name library into a

node_modules folder.

- Now the package-name library can be included in your

NodeJS JavaScript files.

npm uninstall package-name

- This removes the package-name library from the

node_modules folder, deleting the folder if necessary

Express example

$ npm install express

$ node server.js

Example app listening on port 3000!

Understanding localhost

Local server?

The client/server diagrams shown in previous lectures have always involved

two separate machines:

Client

(Routing,
etc…)

Server

But when we run our server locally, isn't there only one computer

involved?

Local server?

The client/server diagrams shown in previous lectures have always involved

two separate machines:

Client

(Routing,
etc…)

Server

But when we run our server locally, isn't there only one computer

involved? A: Yes, when we execute our Node server and access it via

localhost, our laptop is both the client and the server machine.

Running a server

When we run $ node server.js which runs

server.listen(3000), our laptop becomes a server:

Server

When our laptop's operating system

receives HTTP messages sent to port

3000, it will send those messages to

our Node server.

Running a server

Q: If our laptop became a server as soon as we ran "node

server.js", can other computers connect to our server?

Server

Running a server

Q: If our laptop became a server as soon as we ran "node

server.js", can other computers connect to our server?

Server

A: Yes, if we configure our machine

correctly. Instead of doing this

ourselves, we'll use a tool called

localtunnel to help us.

https://github.com/localtunnel/localtunnel

localtunnel

Localtunnel is a command-line tool that is also distributed

via npm.

npm install -g package-name

- We can install packages globally using the -g switch

- Only used for command-line tools

To install localtunnel, we run:

$ npm install -g localtunnel

We can now run the lt command via command-line.

Installing tools with npm

$ npm install package-name

- Downloads the package-name library and puts the

source code for the library in a node_modules

directory.

- Used for libraries or command-line tools that will only

work in the directory you've installed it.

$ sudo npm install -g package-name

- Installs the command-line tools that are provided by

package-name.

- You will probably need superuser (sudo) privileges.

- Only used for command-line tools

localtunnel

If you start your server in one terminal window:

$ node server.js

And you run localtunnel in a different window, using the

port number your server is bound to (3000 in our case):

$ lt --port 3000

Localtunnel will reply with a URL that anyone can use to

access your locally running server.

Note: This should only be done for development/demos

and should *not* be how you deploy services!

localtunnel setup

Server
(Murilo's laptop)

(Routing,
etc…)

Node server
program: Listening
for messages from
the OS

OS: Listening for
HTTP messages
sent to port 3000

Localtunnel.me:
Will forward HTTP
requests to
muriloiwp.loca.lt to
Murilo’s laptop

This is the state of the world
before anyone connects to
muriloiwp.loca.lt...

localtunnel request

(Routing,
etc…)

Client
(your laptop)

(Routing,
etc…)

muriloiwp.loca.lt

"GET
muriloiwp.loca.lt"

"GET
muriloiwp.loca.lt"

"Hey, send this GET
request to port 3000"

"Hey, send this GET
request to port 3000"

"Hey NodeJS process
running on port 3000,
here's this GET
request"

localtunnel response

(Routing,
etc…)

Client
(your laptop)

(Routing,
etc…)

muriloiwp.loca.lt

"The response is
'Hello World'"

"My response is 'Hello
World'"

"OK, my response is
'Hello World'"

"The response is
'Hello World'"

"The response is
'Hello World'"

localtunnel demo

Notice:

- If I kill my "node server.js" process, the URL no longer

works (will timeout)

- If a bunch of people access the URL at the same time,

my server handles each response one at a time

- If I am doing other stuff on my computer (surfing the

web; using PhotoShop) it'll hinder the performance of

my server

"Real" servers

Therefore, most "real" servers are setup like this:

- Instead of running on a random laptop, servers run on

dedicated machines that only runs the server software

- Server computers are installed with a different OS that is

optimized for running server software

- There are backup server computers running in case one dies

(software crashes; power goes out; hardware fails; etc)

- There are multiple computers with identical server

programs running if you have a lot of traffic
- Since each computer can only receive requests one at a time, to receive

more requests simultaneously, you need multiple machines

"Real" servers

Veeeeery general rule of thumb: A single-machine server

should be able to handle ~1000 to 10,000 simultaneous

requests

- It will receive each request one at a time

- It may process the requests in parallel

(In other words: Unless you are a) expecting >1000 simultaneous requests to

your web server, and b) picky about exactly how those requests are served, you

really don't need to be deploying your server via AWS, Google Cloud Platform,

or other IaaS. It's not that AWS/GCP isn't worth learning; it's just not the first

thing you need to learn.)

localtunnel on local machine

Server
(Murilo’s laptop)

(Routing,
etc…)

I can also navigate to:
muriloiwp.loca.lt
from my own laptop.

- In this scenario, my laptop is both
the server and the client.

localtunnel request

Server
(Murilo's laptop)

Client
(also Murilo's laptop)

(Routing,
etc…)

muriloiwp.loca.lt

"GET
muriloiwp.loca.lt"

(Routing,
etc…)

"Hey, send this GET
request to port 3000"

"Hey here's
this GET
request"

localtunnel response

Server
(Murilo's laptop)

Client
(also Murilo's laptop)

(Routing,
etc…)

muriloiwp.loca.lt

"The response is
'Hello World'"

(Routing,
etc…)

"The response is 'Hello
World'"

"OK, my
response is
'Hello World'"

localtunnel is not needed

(Routing,
etc…)

muriloiwp.loca.lt

(Routing,
etc…)

But since the client and the server are on the same
machine… this routing/proxying step is unnecessary.

localhost

localhost:3000

Instead you can query the process running on port
3000 using http://localhost:3000

Localhost request

localhost:3000

Browser: "Hey
Operating System,
send a GET request
to localhost:3000"

OS: "Hey Node,
you're the thing
running on my own
port 3000. Here's this
GET request."

Localhost response

localhost:3000

OS: "Hey Browser,
the response is
'Hello World'"

Node server program:
"OK Operating System,
my response is 'Hello
World'"

Back to Express

ExpressJS

Here's our server written using NodeJS and Express (GitHub):

Let's examine what's going on more carefully...

https://github.com/yayinternet/lecture19/blob/master/express-server/server.js

ExpressJS

The require() lets us load the ExpressJS module.

The module actually contains a function that creates a new

Express Application object.

https://github.com/expressjs/express/blob/master/lib/express.js#L36
https://expressjs.com/en/api.html#app

ExpressJS

The ExpressJS listen() is identical to the NodeJS

listen() function:

- This binds the server process to the given port number.

- Now messages sent to the OS's port 3000 will be routed

to this server process.

- The function parameter is a callback that will execute

when it starts listening for HTTP messages (when the

process has been bound to port 3000)

https://expressjs.com/en/api.html#app.listen
https://nodejs.org/api/http.html#http_server_listen_port_hostname_backlog_callback

ExpressJS

app.method(path, handler)

- Specifies how the server should handle HTTP method

requests made to URL/path

- The function callback will fire every time there's a new

response.

- This example is saying: When there's a GET request to

http://localhost:3000/, respond with the text "Hello World!"

http://localhost:3000/

More routes

Here are some other routes in Express:

https://expressjs.com/en/guide/routing.html

Handler parameters

Express has its own Request and Response objects:

- req is a Request object

- res is a Response object

- res.send() sends an HTTP response with the given

content

- Sends content type "text/html" by default

http://expressjs.com/en/4x/api.html#req
http://expressjs.com/en/4x/api.html#res
http://expressjs.com/en/4x/api.html#res.send

Hello world server

Here's how we put it all together again:

Querying our server

HTTP requests

Our server is written to respond to HTTP requests (GitHub):

Q: How do we sent HTTP requests to our server?

https://github.com/yayinternet/lecture19/blob/master/express-server/server.js

Querying our server

Here are three ways to send HTTP requests to our server:

1. Navigate to http://localhost:3000/<path> in our browser

a. Caveat: Can only do GET requests

2. Call fetch() in web page

a. We've done GET requests so far, but can send any type

of HTTP request

3. curl command-line tool

a. Debug tool we haven't seen yet

curl

curl: Command-line tool to send and receive data from a

server (Manual)

curl --request METHOD url

e.g.

$ curl --request POST http://localhost:3000/hello

http://www.mit.edu/afs.new/sipb/user/ssen/src/curl-7.11.1/docs/curl.html

Querying with fetch()

We can try querying

our server the same

way we've queried

the Spotify or Giphy

servers, i.e. via the

fetch()

command:

fetch() to localhost

We get this CORS error:

But if we try fetching to localhost from file://

Recall: CORS

CORS: Cross-Origin Resource Sharing (wiki)

- Browser policies for what resources a web page can load

- You cannot make cross-origin requests by default for:

- Resources loaded via fetch() or XHR

The problem is that we are trying to fetch()

http://localhost:3000 from file:///

- Since the two resources have different origins, this is

disallowed by default CORS policy

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

Cross-origin solutions

The problem is that we are trying to fetch()

http://localhost:3000 from file:///

Two ways to solve this:

1. Change the server running on localhost:3000 to allow

cross-origin requests, i.e. to allow requests from

different origins (such as file:///)

2. Preferred solution: Load the frontend code statically

from the same server, so that the request is from the

same origin

Solution 1: Enable CORS

You can set an Access-Control-Allow-Origin HTTP header

before sending your response.

- This is the server saying to the browser in its response:

"Hey browser, I'm totally fine with websites of any origin

requesting this file."

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS#Access-Control-Allow-Origin

Solution 1: Enable CORS

Now the fetch will succeed (GitHub):

https://github.com/yayinternet/lecture20/tree/master/server-with-cors

Cross-origin solutions

However, you wouldn't have to enable CORS at all if you

were making requests from the same origin.

Preferred solution: Load the frontend code statically

from the same server, so that the request is from the

same origin.

Recall: Web services

Sometimes when you type a URL into your

browser, the URL represents an API endpoint.

That is, the URL represents a parameterized

request, and the web server dynamically

generates a response to that request.

That's how our NodeJS server treats routes

defined like this:

Recall: File servers

Other times when you type a URL in your

browser, the URL is a path to a file on the hard

drive of the server:

- The web server software grabs that file from

the server's local file system, and sends back

its contents to you

We can make our NodeJS server also sometimes serve files

"statically," meaning instead of treating all URLs as API

endpoints, some URLs will be treated as file paths.

Solution 2: Statically served files

This line of code makes our server now start serving the

files in the 'public' directory directly.

Server static data

Now Express will serve:

http://localhost:3000/fetch.html

http://localhost:3000/fetch.js

Express looks up the files relative to the static directory, so

the name of the static directory ("public" in this case) is not

part of the URL (GitHub)

http://localhost:3000/fetch-text.html
http://localhost:3000/fetch-text.js
https://github.com/yayinternet/lecture20/tree/master/server-with-static-files

Different fetch() methods

fetch() with POST

On the server-side, we have defined a function in

app.post() to handle POST requests to /hello.

Q: How do we make a POST request via fetch()?

Changing the fetch() method

Q: How do we make a POST request via fetch()?

A: We can change the HTTP method via a second

parameter to fetch(), which specifies an options object:

- method: specifies the HTTP request method, e.g.

POST, PUT, PATCH, DELETE, etc.

- GET is the default value.

https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/fetch#Parameters

fetch() with POST

GitHub

https://github.com/yayinternet/lecture20/tree/master/post-simple

Sending data to the server

Route parameters

When we used the Spotify API, we saw a few ways to send

information to the server via our fetch() request.

Example: Spotify Album API

https://api.spotify.com/v1/albums/7aDBFWp72P

z4NZEtVBANi9

- The last part of the URL is a parameter representing the

album id, 7aDBFWp72Pz4NZEtVBANi9

A parameter defined in the URL of the request is often

called a "route parameter."

Route parameters

Q: How do we read route parameters in our server?

A: We can use the :variableName syntax in the path to

specify a route parameter (Express docs):

We can access the route parameters via req.params.

https://expressjs.com/en/guide/routing.html

Route parameters

GitHub

https://github.com/yayinternet/lecture20/tree/master/route-params

Route parameters

You can define multiple route parameters in a URL (docs):

GitHub

https://expressjs.com/en/guide/routing.html
https://github.com/yayinternet/lecture20/tree/master/route-params

Query parameters

The Spotify Search API was formed a little differently:

Example: Spotify Search API

https://api.spotify.com/v1/search?type=album

&q=beyonce

- There were two query parameters sent to the Spotify

search endpoint:

- type, whose value is album

- q, whose value is beyonce

Query parameters

Q: How do we read query parameters in our server?

A: We can access query parameters via req.query:

GitHub

https://github.com/yayinternet/lecture20/tree/master/query-params

Query params with POST

You can send query parameters via POST as well:

(WARNING: We will not be making POST requests like this!
We will be sending data in the body of the request instead of via query params.)

Query params with POST

These parameters are accessed the same way:

(WARNING: We will not be making POST requests like this!
We will be sending data in the body of the request instead of via query params.)

GitHub

https://github.com/yayinternet/lecture20/tree/master/query-params

POST message body

However, generally it is poor style to send data via query

parameters in a POST request.

Instead, you should specify a message body in your

fetch() call:

POST message body

Handling the message body in NodeJS/Express is a little

messy (GitHub):

https://github.com/yayinternet/lecture20/tree/master/post-body-no-parser

body-parser

We can use the body-parser library to help:

This is not a NodeJS API library, so we need to install it:

$ npm install body-parser

https://github.com/expressjs/body-parser

body-parser

We can use the body-parser library to help:

This creates a JSON parser stored in jsonParser, which

we can then pass to routes whose message bodies we want

parsed as JSON.

https://github.com/expressjs/body-parser

POST message body

Now instead of this code:

POST message body

We can access the message body through req.body:

GitHub

https://github.com/yayinternet/lecture20/tree/master/post-body-with-parser

POST message body

We can access the message body through req.body:

Note that we also had to add the jsonParser as a

parameter when defining this route.

GitHub

https://github.com/yayinternet/lecture20/tree/master/post-body-with-parser

POST message body

Finally, we need to add JSON content-type headers on the

fetch()-side (GitHub):

https://github.com/yayinternet/lecture20/blob/master/post-body-with-parser/public/fetch.js

Recap

You can deliver parameterized information to the server in

the following ways:

1. Route parameters

2. GET request with query parameters

(DISCOURAGED: POST with query parameters)

3. POST request with message body

Q: When do you use route parameters vs query

parameters vs message body?

GET vs POST

● Use GET requests for retrieving data, not writing data

● Use POST requests for writing data, not retrieving data

You can also use more specific HTTP methods:

○ PATCH: Updates the specified resource

○ DELETE: Deletes the specified resource

There's nothing technically preventing you from breaking

these rules, but you should use the HTTP methods for their

intended purpose.

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
https://en.wikipedia.org/wiki/POST_(HTTP)

Route params vs Query params

Generally follow these rules:

● Use route parameters for required parameters for the

request

● Use query parameters for:

○ Optional parameters

○ Parameters whose values can have spaces

These are conventions and are not technically enforced, nor

are they followed by every REST API.

Example: Spotify API

The Spotify API mostly followed these conventions:

https://api.spotify.com/v1/albums/7aDBFWp72Pz4NZEtVBANi9

- The Album ID is required and it is a route parameter.

https://api.spotify.com/v1/search?type=album&q=the%20wee

knd&limit=10

- q is required but might have spaces, so it is a query

parameter

- limit is optional and is a query parameter

- type is required but is a query parameter (breaks

convention)

Notice both searches are GET requests, too

https://api.spotify.com/v1/albums/7aDBFWp72Pz4NZEtVBANi9
https://api.spotify.com/v1/search?type=album&q=the%20weeknd&limit=10
https://api.spotify.com/v1/search?type=album&q=the%20weeknd&limit=10

package.json

Installing dependencies

In our examples, we had to install the express and

body-parser npm packages.

$ npm install express

$ npm install body-parser

These get written to the node_modules directory.

Uploading server code

When you upload NodeJS code to a GitHub repository (or

any code repository), you should not upload the

node_modules directory:

- You shouldn't be modifying code in the node_modules

directory, so there's no reason to have it under version

control

- This will also increase your repo size significantly

Q: But if you don't upload the node_modules directory to

your code repository, how will anyone know what

libraries they need to install?

Managing dependencies

If we don't include the node_modules directory in our

repository, we need to somehow tell other people what

npm modules they need to install.

npm provides a mechanism for this: package.json

https://docs.npmjs.com/getting-started/using-a-package.json

package.json

You can put a file named package.json in the root

directory of your NodeJS project to specify metadata about

your project.

Create a package.json file using the following command:

$ npm init

This will ask you a series of questions then generate a

package.json file based on your answers.

https://docs.npmjs.com/getting-started/using-a-package.json
https://docs.npmjs.com/getting-started/using-a-package.json

Auto-generated package.json

GitHub

https://github.com/yayinternet/lecture20/tree/master/post-body-with-parser-package-json

Saving deps to package.json

Now when you install packages, you should pass in the

--save parameter:

$ npm install --save express

$ npm install --save body-parser

This will also add an entry for this library in package.json.

Saving deps to package.json

If you remove the node_modules directory:

$ rm -rf node_modules

You can install your project dependencies again via:

$ npm install

- This also allows people who have downloaded your code from

GitHub to install all your dependencies with one command instead

of having to install all dependencies individually.

npm scripts

Your package.json file also defines scripts:

You can run these scripts using $ npm scriptName

E.g. the following command runs "node server.js"

$ npm start

