
Interactive Web
Programming

1st semester of 2021

Murilo Camargos
(murilo.filho@fgv.br)

Heavily based on Victoria Kirst slides

https://web.stanford.edu/class/archive/cs/cs193x/cs193x.1176/lectures/

Our schedule

Today

- MongoDB

- Servers and MongoDB

Next week

- Web application architecture

- Authentication

MongoDB installation

This lecture assumes you have installed MongoDB:

- http://web.stanford.edu/class/cs193x/install-mongodb/

http://web.stanford.edu/class/cs193x/install-mongodb/

MongoDB

Database definitions

A database (DB) is an organized collection of data.

- In our dictionary example, we used a JSON file to store

the dictionary information.

- By this definition, the JSON file can be considered a

database.

A database management system (DBMS) is software that

handles the storage, retrieval, and updating of data.

- Examples: MongoDB, MySQL, PostgreSQL, etc.

- Usually when people say "database", they mean data

that is managed through a DBMS.

MongoDB

MongoDB: A popular open-source DBMS

- A document-oriented database as opposed to a

relational database

Relational database:

Name School Employer Occupation

Lori null Self Entrepreneur

Malia Harvard null null

{
 name: "Lori",
 employer: "Self",
 occupation: "Entrepreneur"
}
{
 name: "Malia",
 school: "Harvard"
}

Document-oriented DB:

Relational databases have fixed schemas;

document-oriented databases have

flexible schemas

https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Document-oriented_database

MongoDB is another software program running on the
computer, alongside our NodeJS server program.

It is also known as the MongoDB server.

There are MongoDB libraries we can use in NodeJS to
communicate with the MongoDB Server, which reads and

writes data in the database it manages.

The database the MongoDB Server manages might be
local to the server computer...

Data

Or it could be stored on other server computer(s)
("cloud storage").

(Routing,
etc…)

System overview

Data

$ nod
e ser

ver.j
s

$ mongod

For development, we will have 2 processes running:

- node will run the main server program on port 3000

- mongod will run the database server on a port 27017

System overview

Data

$ mongod

The mongod server will be bound to port 27017 by default

- The mongod process will be listening for messages to

manipulate the database: insert, find, delete, etc.

System overview

$ nod
e ser

ver.j
s

$ mongod

We will be using two ways of communicating to the

MongoDB server:

- NodeJS libraries

- mongo command-line tool

$ m
ong

o

MongoDB concepts

Database:

- A container of MongoDB collections

Collection:

- A group of MongoDB documents.

- (Table in a relational database)

Document:

- A JSON-like object that represents one instance of a

collection (Row in a relational database)

- Also used more generally to refer to any set of

key-value pairs.

MongoDB example

{ "_id" :
ObjectId("5922acf09e7640
3b3a7549ec"), "style" :
"graduation", "message"
: "Hi Pooh,\n\n🎉
Congrats!!! 🎉\n\n<3
Piglet" }

{ "_id" :
ObjectId("5922b8a186ebd7
3e42b1b53c"), "style" :
"july4", "message" :
"Dear Chip,\n\nHappy 4th
of July!\n\n❤Dale" }

{ "_id" :
ObjectId("5922b90d86ebd7
3e42b1b53d"), "style" :
"fathersday", "message"
: "HFD" }

Collection:
card

Database:
ecards-db

Documents:

The document keys are

called fields

mongod: Database process

When you install MongoDB, it will come with the mongod

command-line program. This launches the MongoDB

database management process and binds it to port 27017:

$ mongod

$ mongod

https://www.mongodb.com/download-center#community

mongo: Command-line interface

You can connect to the MongoDB server through the

mongo shell:

$ mongo

$ mongod

mongo shell commands

> show dbs

- Displays the databases on the MongoDB server

> use databaseName

- Switches current database to databaseName

- The databaseName does not have to exist already

- It will be created the first time you write data to it

> show collections

- Displays the collections for the current database

mongo shell commands

> db.collection

- Variable referring to the collection collection

> db.collection.find(query)

- Prints the results of collection matching the query

- The query is a MongoDB Document (i.e. a JSON object)

- To get everything in the collection use

db.collection.find()

- To get everything in the collection that matches

x=foo, db.collection.find({x: 'foo'})

mongo shell commands

> db.collection.findOne(query)

- Prints the first result of collection matching the query

> db.collection.insertOne(document)

- Adds document to the collection

- document can have any structure
> db.test.insertOne({ name: 'dan' })

> db.test.find()

{ "_id" : ObjectId("5922c0463fa5b27818795950"), "name" : "dan" }

MongoDB will automatically add a unique _id to every

document in a collection.

mongo shell commands

> db.collection.deleteOne(query)

- Deletes the first result of collection matching the query

> db.collection.deleteMany(query)

- Delete multiple documents from collection.

- To delete all documents, db.collection.deleteMany()

> db.collection.drop()

- Removes the collection from the database

mongo shell

When should you use the mongo shell?

- Adding test data

- Deleting test data

NodeJS and MongoDB

NodeJS

Recall: NodeJS can be used for writing scripts in JavaScript,

completely unrelated to servers.

simple-script.js

function printPoem() {
 console.log('Roses are red,');
 console.log('Violets are blue,');
 console.log('Sugar is sweet,');
 console.log('And so are you.');
 console.log();
}

printPoem();
printPoem();

Mongo JS scripts

Before we start manipulating MongoDB from the server,

let's just write some JavaScript files that will query

MongoDb.

Data

No web servers are involved yet!

$ npm start

Our Node script
prints to
console

NodeJS Driver

To read and write to the MongoDB database

from Node we'll be using the 'mongodb'

library.

We will install via npm:

$ npm install --save mongodb

On the MongoDB website, this library is called the

"MongoDB NodeJS Driver"

https://mongodb.github.io/node-mongodb-native/

mongodb objects

The mongodb Node library provides objects to manipulate

the database, collections, and documents:

- Db: Database; can get collections using this object

- Collection: Can get/insert/delete documents from

this collection via calls like insertOne, find, etc.

- Documents are not special classes; they are just

JavaScript objects

http://mongodb.github.io/node-mongodb-native/2.2/api/Db.html
http://mongodb.github.io/node-mongodb-native/2.2/api/Collection.html

Getting a Db object

You can get a reference to the database object by using the

MongoClient.connect(url, callback) function:

- url is the connection string for the MongoDB server

- callback is the function invoked when connected

- database parameter: the Db object

http://mongodb.github.io/node-mongodb-native/2.2/api/Db.html
http://mongodb.github.io/node-mongodb-native/2.2/api/Db.html

Connection string

- The URL is to a MongoDB server, which is why it begins

with mongodb:// and not http://

- The MongoDB server is running on our local machine,

which is why we use localhost

- The end of the connection string specifies the database

name we want to use.

- If a database of that name doesn't already exist, it

will be created the first time we write to it.
MongoDB Connection string format

http://docs.mongodb.org/manual/reference/connection-string/

Callbacks and Promises

Every asynchronous MongoDB method has two versions:

- Callback

- Promise

The callback version of MongoClient.connect is:

Callbacks and Promises

Every asynchronous MongoDB method has two versions:

- Callback

- Promise

The Promise version is:

Callbacks and Promises

Every asynchronous MongoDB method has two versions:

- Callback

- Promise

The Promise + async/await version is:

Using a collection

const coll = db.collection(collectionName);

- Obtains the collection object named collectionName

and stores it in coll

- You do not have to create the collection before using it

- It will be created the first time we write to it

- This function is synchronous

collection.insertOne (Callback)

collection.insertOne(doc, callback);

- Adds one item to the collection

- doc is a JavaScript object representing the key-value pairs to

add to the collection

- The callback fires when it has finished inserting

- The first parameter is an error object

- The second parameter is a result object, where

result.insertedId will contain the id of the object

that was created

Callback version

collection.insertOne (Promise)

const result = await collection.insertOne(doc);

- Adds one item to the collection

- doc is a JavaScript object representing the key-value pairs to

add to the collection

- Returns a Promise that resolves to a result object when

the insertion has completed

- result.insertedId will contain the id of the object

that was created

Promise version

We will be using the Promise + async/await versions of all the

MongoDB asynchronous functions, as it will help us avoid

callback hell

http://i.imgur.com/MByWioX.png

collection.findOne

const doc = await collection.findOne(query);

- Finds the first item in the collection that matches the query

- query is a JS object representing which fields to match on

- Returns a Promise that resolves to a document object

when findOne has completed

- doc will be the JS object, so you can access a field via

doc.fieldName, e.g. doc._id

- If nothing is found, doc will be null

collection.findOne

collection.find()

const cursor = await collection.find(query);

- Returns a Cursor to pointing to the first entry of a set of

documents matching the query

- You can use hasNext and next to iterate through the list:

(This is an example of something that is a lot easier to do with async/await)

http://mongodb.github.io/node-mongodb-native/2.2/api/Cursor.html

collection.find().toArray()

const cursor = await collection.find(query);

const list = await cursor.toArray();

- Cursor also has a toArray() function that converts the

results to an array

http://mongodb.github.io/node-mongodb-native/2.2/api/Cursor.html

collection.update

await collection.update(query, newEntry);

- Replaces the item matching query with newEntry

- (Note: This is the simplest version of update. There are

more complex versions of update that we will address

later.)

collection.update

"Upsert" with collection.update

MongoDB also supports "upsert", which is

- Update the entry if it already exists

- Insert the entry if it doesn't already exist

const params = { upsert: true };

await collection.update(query, newEntry, params);

"Upsert" with collection.update

collection.deleteOne/Many

const result = await collection.deleteOne(query);

- Deletes the first the item matching query

- result.deletedCount gives the number of docs deleted

const result = await collection.deleteMany(query);

- Deletes all items matching query

- result.deletedCount gives the number of docs deleted

- Use collection.deleteMany() to delete everything

collection.deleteOne

collection.deleteMany

Advanced queries

MongoDB has a very powerful querying syntax that we did

not cover in these examples.

For more complex queries, check out:

- Querying

- Query selectors and projection operators
- db.collection('inventory').find({ qty: { $lt: 30 } });

- Updating

- Update operators
db.collection('words').updateOne(

 { word: searchWord },

 { $set: { definition: newDefinition }})

https://docs.mongodb.com/manual/tutorial/query-documents/
https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/tutorial/update-documents/
https://docs.mongodb.com/manual/reference/operator/update

Looking up documents by
MongoDB id (ObjectID)

MongoDB: _id

MongoDB creates a unique id for each doc it creates.

- This is stored in a _id field and consists of a string stored in

an ObjectID object.

Recall the id is returned after we've inserted a new document:

const result = await collection.insertOne(doc);

- result.insertedId will contain the _id of the object

that was created

https://mongodb.github.io/node-mongodb-native/api-bson-generated/objectid.html

Find by Mongo ID: ObjectID

Let's say you have a route that creates documents:

Find by Mongo ID: ObjectID

Let's say you have a route that creates documents:

You are returning the
MongoDB-generated unique
ID for the document, for
querying later.

Find by Mongo ID: ObjectID

If you want to find a document by its MongoDB generated

_id field, you must wrap the string id in an ObjectID.

- You need to import the ObjectID class first.

https://mongodb.github.io/node-mongodb-native/api-bson-generated/objectid.html

If you want to find a document by its MongoDB generated

_id field, you must wrap the string id in an ObjectID.

- You need to import the ObjectID class first.

Find by Mongo ID: ObjectID

https://mongodb.github.io/node-mongodb-native/api-bson-generated/objectid.html

Using MongoDB in a server

Dictionary with MongoDB

Let's change our

Dictionary example to

use a MongoDB

backend instead of

dictionary.json.

Review system

Client

(Routing,
etc…)

Server

If we deployed our dictionary web app to abc.com:

1. The user navigates to abc.com

2. The browser makes an HTTP GET request for abc.com

1
2

Review system

Client

(Routing,
etc…)

Server

3. The server computer that is located at abc.com receives the

HTTP GET request

4. The server computer gives the NodeJS server process the

HTTP GET request message

3

4

Review system

Server

Our NodeJS server code has

app.use(express.static('public')); so it will first

look to see if an index.html file exists in the public

directory.

4

"Does the 'public'

folder have an

'index.html' file?

Review system

Server

5. Since there is an index.html file, our NodeJS server will

respond with the index.html file

5

"Does the 'public'

folder have an

'index.html' file?

Yes

Review system

Client

(Routing,
etc…)

Server

5. Our Node server program replies with the index.html file

6. The server computer sends back the index.html file

7. The browser receives the index.html file and begins to

render it

6

5

67
7

Review system

Client

8. In rendering the HTML, the browser sees it needs style.css

and fetch.js

Review system

Client

(Routing,
etc…)

Server

1. So the browser makes two more HTTP GET requests:

- One for style.css

- One for script.js

1

Review system

Client

(Routing,
etc…)

Server

2. These GET requests get routed to the server computer

3. The server computer sends the GET requests to our NodeJS

process

2

3

Review system

Server

4. Our NodeJS server code finds fetch.js and style.css in the

public directory, so it responds with those files

4

Review system

Client

(Routing,
etc…)

Server

4. Our Node server program replies with the style.css and

fetch.js files

5. The server computer sends these files back to the client

6. The browser receives the files and continues rendering

index.html

5

4

56
6

Review system

Client

(Routing,
etc…)

Server

In this picture, there are two copies of index.html, style.css,

and fetch.js:

- The server computer has these files stored in its file system

- The browser has just downloaded the files from the server

Review system

Client

(Routing,
etc…)

Server

The server computer provided the files.

But the client computer is going to execute the files.

- So the code in fetch.js is going to be run on the client,

not on the server.

Review system

1. The client has rendered the page and ran the JavaScript in

fetch.js to attach the event listeners.

2. Then, when we enter a word and hit "Search"...

1

Client

Review system

2. ...the onSearch function is executed on the client.

2

Client

Review system

3. Our onSearch function includes a call to fetch(), which is

going to trigger another HTTP GET request, this time for

abc.com/lookup/cat.

Client
3

Review system

Client

(Routing,
etc…)

Server

4. Because of the call to fetch(), the browser makes an HTTP

GET request for abc.com/lookup/cat.

4

Review system

Client

(Routing,
etc…)

Server

5. These GET requests get routed to the server computer

6. The server computer sends the GET requests to our NodeJS

process

5

7

Review system

Server

7. Our NodeJS server code first tries to see whether there's an

"lookup/cat/index.html" in the public directory.

7

Review system

Server

8. "public/lookup/cat/index.html" doesn't exist, so now it sees

whether there's a route that matches GET "/lookup/cat":

- '/lookup/:word' matches, so onLookupWord is

executed on the server

8

Review system

Server

9. In the version we wrote before, we get the definition from

the JSON dictionary file that's also located on the server.

- We'll change this to query MongoDB instead.

9

Review system

Client

(Routing,
etc…)

Server

10. Our Node server program replies with JSON

11. The server computer sends JSON back to the client

12. The browser receives the JSON and continues executing the

JavaScript

10

11
12

Review system

13. The onSearch function continues executing with the JSON

results and updates the client page.

Client

13

Review system

Client

Review system

Client

(Routing,
etc…)

Server

The server generated the JSON with the word and definition.

The client consumed the JSON with the word and definition.

Using MongoDB in a server

Starting a server: Before

(Previous code: This
doesn't use MongoDB)

Starting a server: After

Starting a server: After

Example: Dictionary

We want our

server to load

definitions

from the

dictionary...

JSON Dictionary lookup

(Previous code: This
doesn't use MongoDB)

MongoDB Dictionary lookup

Dictionary with MongoDB

And we want to modify

definitions in the

dictionary:

JSON Dictionary write

(Previous
code: This

doesn't use
MongoDB)

MongoDB Dictionary write

Another example: E-cards

Example: E-cards

We'll be creating an e-card app, whose data is saved in a

MongoDB database:

Setup

When the user loads

to an index page, we

want to present

them with an E-Card

Maker UI

Setup

When the user has created an e-card, we want it accessible

via URL of this form:

/id/<ecard_id>

Step 1: Saving data

We'll need to save 3

pieces of data:

- Card style

- Card message

- A unique id for

each card

Example: E-card saving data

Step 2: Loading a card

When the user has created an e-card, we want it accessible

via URL of this form:

/id/<ecard_id>

Web app architecture

How do we implement an app so that to show a different

view depending on the URL path?

Create-a-card:

localhost:3000/
View card:

localhost:3000/id/<card_id>

Web app architectures

Structuring a web app

There are roughly 4 strategies for architecting a web

application:

1. Server-side rendering:

Server sends a new HTML page for each unique path

2. Single-page application:

Server sends the exact same web page for every unique

path (and the page runs JS to change what it look like)

3. Combination of 1 and 2 ("Isomorphic" / "Universal")

4. Progressive Loading

https://en.wikipedia.org/wiki/Single-page_application

(Short take on these)

1. Server-side rendering:

- CS193X: We will show you how to do this

2. Single-page application:

- CS193X: We will show you how to do this

3. Combination of 1 and 2 ("Isomorphic" / "Universal")

- This is probably the most common technique

- CS193X: We will talk about this but won't show you

how to code it

4. Progressive Loading

- This is probably the future (but it's complex)

- CS193X: We will talk about this but won't show you

how to code it

Server-side rendering

Server-side rendering

Multi-page web app:

- The server generates a

different web page

- Usually involves filling out

and returning an HTML

template in response to a

request

- This is done by a

templating engine: Jade,

Handlebars, etc

Server

HTML template

Handlebars: Template engine

We will be showing the Handlebars template engine:

- Handlebars lets you write templates in HTML

- You can embed {{ placeholders }} within the

HTML that get filled in.

- Your templates are saved in .handlebars files

<div class="entry">

 <h1>{{title}}</h1>

 <div class="body">

 {{body}}

 </div>

</div>

http://handlebarsjs.com/

Handlebars and NodeJS

You can setup Handlebars and NodeJS using the

express-handlebars NodeJS library:

const exphbs = require('express-handlebars');

…

const app = express();

const hbs = exphbs.create();

app.engine('handlebars', hbs.engine);

app.set('view engine', 'handlebars');

E-cards: Server-side rendering

We change our E-cards example

to have 2 Handlebars templates:

- card.handlebars

- Index.handlebars

views/ is the default directory

in which Handlebars will look

for templates.

Note that there are no longer

any HTML files in our public/

folder.

index.handlebars

This is the same contents of index.html with no placeholders,

since there were no placeholders needed:

card.handlebars

But for the card-view, we want a different card style and

message depending on the card:

card.handlebars

But for the card-view, we want a different card style and

message depending on the card:

E-cards: Server-side rendering

Setting up NodeJS to use Handlebars and adding templates

does nothing on its own. To use the templates, we need to

call res.render:

function onGetMain(req, res) {

 res.render('index');

}

app.get('/', onGetMain);

res.render(viewName, placeholderDefs)

- Returns the HTML stored in

"views/viewName.handlebars" after replacing the

placeholders, if they exist

https://expressjs.com/en/api.html#app.render

E-cards: Server-side rendering

For retrieving the card, we have placeholders we need to fill

in, so we define the placeholder values in the second

parameter:

Single-page web app

Single page web app

- The server always sends the same one HTML file for all

requests to the web server.

- The server is configured so that requests to /id/<card_id>

would still return e.g. index.html.

- The client JavaScript parses the URL to get the route

parameters and initialize the app.

index.html

GET localhost:3000/

Single page web app

- The server always sends the same one HTML file for all

requests to the web server.

- The server is configured so that requests to /id/<card_id>

would still return e.g. index.html.

- The client JavaScript parses the URL to get the route

parameters and initialize the app.

index.html

GET id/2338242394

Single page web app

Another way to think of it:

- You configure several JSON routes for your server

- You embed all your view into index.html

- You use JavaScript to switch between the views

index.html

GET id/2338242394

