
Interactive Web
Programming

1st semester of 2021

Murilo Camargos
(murilo.filho@fgv.br)

Heavily based on Victoria Kirst slides

https://web.stanford.edu/class/archive/cs/cs193x/cs193x.1176/lectures/

Today’s schedule

Today

- Web application architecture

- Server-side rendering with Handlebars

- Modules, Middleware, Routes

- Web application architecture

- Single-page web app

- Authentication

Next class (our last!)

- Important ideas we didn’t cover (e.g. testing and

accessibility)

- Libraries and frameworks

NodeJS and MongoDB

Errata from last class

Last class we created a connection like this

Errata from last class

Current versions will accept this:

Errata from last class

Current versions will accept this:

Dictionary example

Let's go back to our dictionary example that let us look up

the definition of words (GitHub):

https://github.com/yayinternet/mongodb-examples/tree/master/dictionary-server-side-starter

Current code: Static routes

We've defined our server to:

1. Statically serve index.html / style.css / fetch.js

Current code: Static routes

We've defined our server to:

1. Statically serve index.html / style.css / fetch.js

localhost:3000/

So when there's a request to localhost:3000/ ...

Current code: Static routes

We've defined our server to:

1. Statically serve index.html / style.css / fetch.js

- Our NodeJS server.js program checks the public directory to see if

"index.html" exists, which is does, so it replies with that file.

- It similarly provides fetch.js and style.css, embedded in index.html.

"Does the 'public'

folder have an

'index.html' file?

Current code: Static routes

We've defined our server to:

1. Statically serve index.html / style.css / fetch.js

Current code: JSON route

We've also defined our server to:

2. Return JSON in response to request to lookup/<word>

Current code: JSON route

We've also defined our server to:

2. Return JSON in response to request to lookup/<word>

Current code: JSON route

We've also defined our server to:

2. Return JSON in response to request to lookup/<word>

If we navigate to http://localhost:3000/lookup/dog, we see the

raw JSON response.

http://localhost:3000/lookup/dog

Current code: JSON route

We've also defined our server to:

2. Return JSON in response to request to lookup/<word>

But how we

actually query

our JSON

route is

through

fetch().

Dynamically generated
web pages

Dictionary example

What if we wanted each definition to also have its own

page: http://localhost:3000/dog should show a web page

with the definition of "dog:"

Naive solution: static files

One solution would be to create 1000s of very similar web pages:

cat/index.html

Naive solution: static files

category/index.html

One solution would be to create 1000s of very similar web pages:

Naive solution: static files

catastrophe/index.html

One solution would be to create 1000s of very similar web pages:

Naive solution: static files

We could put each of these files

under public/ and have a

unique HTML file for each word

of the dictionary.

...

...

Naive solution: static files

However, that would be a pain:

- Very time-consuming to hand-code

- Even if we wrote a script to

generate the 1000s of HTML files,

it'd be annoying to have to rerun

the script every time there's a new

word, new definition, if there's a

change in the HTML format, etc.

...

...

Dynamically generated pages

Instead, we'll make our server dynamically generate a web

page for the word as soon as it is requested:

localhost:3000/dog

GET localhost:3000/dog

Dynamically generated pages

Instead, we'll make our server dynamically generate a web

page for the word as soon as it is requested:

localhost:3000/dog
server.js

GET localhost:3000/dog

...

Server.js will

create an

HTML page for

the word on

the spot...

Dynamically generated pages

Instead, we'll make our server dynamically generate a web

page for the word as soon as it is requested:

server.js

GET localhost:3000/dog

And we see the HTML

displayed.

Dynamically generated pages

Instead, we'll make our server dynamically generate a web

page for the word as soon as it is requested:

localhost:3000/dog
server.js

GET localhost:3000/dog

...

Server.js will

create an

HTML page for

the word on

the spot...

How does this step
work?

Recall: Web app architectures

Structuring a web app

There are roughly 4 strategies for architecting a web

application:

1. Server-side rendering:

Server sends a new HTML page for each unique path

2. Single-page application:

Server sends the exact same web page for every unique

path (and the page runs JS to change what it look like)

3. Combination of 1 and 2 ("Isomorphic" / "Universal")

4. Progressive Loading

https://en.wikipedia.org/wiki/Single-page_application

Structuring a web app

There are roughly 4 strategies for architecting a web

application:

1. Server-side rendering:

Server sends a new HTML page for each unique path

→ Let's start with this one.

Dynamically generated pages

We'll make our server dynamically generate a web page

for the word as soon as it is requested:

localhost:3000/dog
server.js

GET localhost:3000/dog

...

Server.js will

create an

HTML page for

the word on

the spot...

HTML Strings

We start with defining a dummy route:

HTML Strings

We start with defining a dummy route:

This just echoes what

we passed in as a query

parameter.

HTML Strings

Now we look up and show the definition too:

HTML Strings

HTML Strings

We can make our HTML response a little fancier:

HTML Strings

We can make our HTML response a little fancier:

HTML Strings

This works, but now we

have a big HTML string

in our server code:

Template Engines

Goal: HTML Template

We want our NodeJS code to be able to take an HTML

template, fill in its placeholder values, and return the

completed page:

server.js

GET localhost:3000/dog

word: "dog",

definition: "A quadruped
of the genus Canis, …"

Goal: HTML Template

We want our NodeJS code to be able to take an HTML

template, fill in its placeholder values, and return the

completed page:

server.js

GET localhost:3000/dog

Template Engine

Template Engine: Allows you to define templates in a text

file, then fill out the contents of the template in JavaScript.

- Node will replace the variables in a template file with

actual values, then it will send the result to the client as

an HTML file.

Some popular template engines:

- Handlebars: We'll be using this one

- Pug

- EJS

https://expressjs.com/en/guide/using-template-engines.html
http://handlebarsjs.com/
https://github.com/pugjs/pug
https://github.com/tj/ejs

Handlebars: Template engine

- Handlebars lets you write templates in HTML

- You can embed {{ placeholders }} within the

HTML that can get filled in via JavaScript.

- Your templates are saved in .handlebars files

<div class="entry">

 <h1>{{title}}</h1>

 <div class="body">

 {{body}}

 </div>

</div>

Handlebars and NodeJS

You can setup Handlebars and NodeJS using the

express-handlebars NodeJS library:

const exphbs = require('express-handlebars');

…

const app = express();

const hbs = exphbs.create();

app.engine('handlebars', hbs.engine);

app.set('view engine', 'handlebars');

Dictionary example

So instead of our large

template string:

Handlebars template

We can create a template in a file words.handlebars:

.handlebars is the file extension for Handlebar templates.

Handlebars template

We save this in a directory called "views":

views/ is the default directory

in which Handlebars will look

for templates.

Dictionary example

Now instead of

returning a long string

on the server side:

Set template engine

We configure our server to use Handlebars as the

template engine:

Call res.render

We call

res.render to

fill in the "word"

Handlebars

template.

https://expressjs.com/en/api.html#app.render

Call res.render

The first parameter is the string name

of the template to render, without the

".handlebars" extension.

Call res.render

The second parameter

contains the definitions of

the variables to be filled

out in the template.

...

...

HTML Template

The Handlebars templating engine will return to the client

the filled in template as HTML:

server.js

GET localhost:3000/dog

HTML Template

The Handlebars templating engine will return to the client

the filled in template as HTML:

Note on templates

- The server is dynamically generating

HTML files to return back to the

client, but these HTML files aren't

saved on the server; they are just

passed directly to the client from

memory.

Note on style

Right now, we are splitting our view code

in two places:

- index.html: The file that gets loaded

when you go to localhost:3000

- word.handlebars: The HTML

template for word pages

Style-wise, if you use a template engine,

you usually serve *all* your view files via

the template engine.

Note on style

We can make index.html into a

Handlebars "template" that does not

have any parameters:

Note on style

Then in server.js, we will render the "index" template when

there is a GET request to localhost:3000:

Completed example

Completed example code:

- dictionary-server-side

- See run instructions

https://github.com/yayinternet/mongodb-examples/tree/master/dictionary-server-side
https://github.com/yayinternet/mongodb-examples#dictionary-server-side

Modules and Routes

Routes

So far, our server routes have all been

defined in one file.

Right now, server.js:

- Starts the server

- Sets the template engine

- Serves the public/ directory

- Defines the JSON-returning routes

- Defines the HTML-returning routes

As our server grows, it'd be nice to split up

server.js into separate files.

NodeJS modules

NodeJS allows you to load external files, or "modules", via

require(). We've already loaded three types of modules:

- Core NodeJS modules, e.g. require('http')

- External NodeJS modules downloaded via npm, e.g.

require('express')

- A JSON file, e.g. require('./dictionary.json')

We will now see how to define our own NodeJS modules

and include them in other JavaScript files via the

require() statement.

https://nodejs.org/api/modules.html#modules_modules

NodeJS modules

A NodeJS module is just a JavaScript file.

- One module = One file

- There can only be one module per file

Let's say that you define the following JavaScript file:

NodeJS modules

You can include it in another JavaScript file by using the

require statement:

- Note that you MUST specify "./", "../", "/", etc.

- Otherwise NodeJS will look for it in the node_modules/

directory. See require() resolution rules

https://nodejs.org/api/modules.html#modules_all_together

NodeJS modules

$ node scripts.js
hello

The NodeJS file executes

immediately when require()d.

Private variables

Everything declared in a module is private to that module

by default.

Let's say that you define the following JavaScript file:

Private variables

If we include it and try to run printHello or access

helloCounter, it will not work:

$ node scripts.js
/.../scripts.js:2
printHello();
^

ReferenceError: printHello is not defined
 at Object.<anonymous>

Private variables

If we include it and try to run printHello or access

helloCounter, it will not work:

$ node scripts.js
scripts.js:2
console.log(helloCounter);
 ^
ReferenceError: helloCounter is not defined
 at Object.<anonymous>

module.exports

- module is a special object automatically defined in each

NodeJS file, representing the current module.

- When you call require('./fileName.js'), the

require() function will return the value of

module.exports as defined in fileName.js

- module.exports is initialized to an empty object.

https://nodejs.org/api/modules.html#modules_the_module_object

$ node scripts.js
{}

Prints an empty object
because we didn't modify
module.exports in
broken-module.js.

$ node scripts.js
hello there

- Prints "hello there", because we
set module.exports to "hello
there" in string-module.js.

- The value of "result" is the value
of "module.exports" in
string-module.js.

$ node scripts.js
[Function: printHello]
hello

- We can export a function by
setting it to module.exports

$ node scripts.js
hello
hello, world
hello, it's me

- We can export multiple
functions by setting fields of the
module.exports object

$ node scripts.js
hello
hello, world
hello, it's me

- We can export multiple
functions by setting fields of the
module.exports object

$ node scripts.js
count is now 1
count is now 2
count is now 3

- You can create private variables
and fields by not exporting
them.

Simple module examples

Module example code is here:

- simple-modules

- Run instructions

NodeJS Module documentation:

- https://nodejs.org/api/modules.html

https://github.com/yayinternet/module-examples/tree/master/simple-modules
https://github.com/yayinternet/module-examples/tree/master#simple-modules
https://nodejs.org/api/modules.html

Back to Routes

Routes

So far, our server routes have all been

defined in one file.

Right now, server.js:

- Starts the server

- Sets the template engine

- Serves the public/ directory

- Defines the JSON-returning routes

- Defines the HTML-returning routes

As our server grows, it'd be nice to split up

server.js into separate files.

Goal: HTML vs JSON routes

Let's try to split server.js into 3 files.

Right now, server.js does the following:

- Starts the server

- Sets the template engine

- Serves the public/ directory

- Defines the JSON-returning routes

- Defines the HTML-returning routes

→ We'll continue to use server.js for the logic in blue

→ We'll try to move JSON routes to api.js

→ We'll try to move the HTML routes to view.js

Goal: HTML vs JSON routes

Desired directory structure:

→ We'll continue to use server.js for the logic in blue

→ We'll try to move JSON routes to api.js

→ We'll try to move the HTML routes to view.js

Desired: server.js

We'd like to keep all
set-up stuff in
server.js...

Desired api.js (DOESN'T WORK)

And we'd like to be able to define the /lookup/:word
route in a different file, something like the following:

Q: How do we define
routes in a different file?

Router

Express lets you create Router objects, on which you can

define modular routes:

Router

- Create a new Router by calling express.Router()

- Set routes the same way you'd set them on App

- Export the router via module.exports

Using the Router

Now we include the router by:

- Importing our router module via require()

- Calling app.use(router) on the imported router

Now the app will also use the routes defined in

routes/api.js!

However, we have a bug in our code...

https://expressjs.com/en/api.html#app.use

MongoDB variables

We need to
access the
MongoDB
collection in our
route...

MongoDB variables

...Which used to
be defined as a
global variable in
server.js.

Q: What's the
right way to
access the
database data?

Middleware

In Express, you define middleware functions that get called

certain requests, depending on how they are defined.

The app.METHOD routes we have been writing are actually

middleware functions:

onViewIndex is a middleware function that gets called

every time there is a GET request for the "/" path.

https://expressjs.com/en/guide/writing-middleware.html

Middleware: app.use()

We can also define middleware functions using app.use():

Middleware functions receive 3 parameters:

- req and res, same as in other routes

- next: Function parameter. Calling this function invokes

the next middleware function in the app.

- If we resolve the request via res.send, res.json,

etc, we don't have to call next()

Middleware: app.use()

We can write middleware that defines new fields on each

request:

Middleware: app.use()

Now if we load this middleware on each request:

Middleware: app.use()

Now if we load this middleware on each request:

Note that we

need to use

the api router

AFTER the

middleware

Middleware: app.use()

Then we can access the collection via req.collection:

Middleware: app.use()

Then we can access the collection via req.collection:

Views router

We can similarly move the HTML-serving logic to views.js

and require() the module in server.js:

Views router

Routes and middleware

Simple middleware example code is here:

- simple-middleware

- Run instructions

Dictionary with routes example code here:

- dictionary-with-routes

- Run instructions

Express documentation:

- Router

- Writing / Using Middleware

https://github.com/yayinternet/module-examples/tree/master/simple-middleware
https://github.com/yayinternet/module-examples/blob/master/README.md#simple-middleware
https://github.com/yayinternet/module-examples/tree/master/dictionary-with-routes
https://github.com/yayinternet/module-examples/blob/master/README.md#dictionary-with-routes
https://expressjs.com/en/4x/api.html#router
https://expressjs.com/en/guide/writing-middleware.html
https://expressjs.com/en/guide/using-middleware.html

Recall: Web app architectures

Structuring a web app

There are roughly 4 strategies for architecting a web

application:

1. Server-side rendering:

Server sends a new HTML page for each unique path

2. Single-page application:

Server sends the exact same web page for every unique

path (and the page runs JS to change what it look like)

3. Combination of 1 and 2 ("Isomorphic" / "Universal")

4. Progressive Loading

https://en.wikipedia.org/wiki/Single-page_application

Structuring a web app

There are roughly 4 strategies for architecting a web

application:

1. Server-side rendering:

Server sends a new HTML page for each unique path

2. Single-page application:

Server sends the exact same web page for every unique

path (and the page runs JS to change what it look like)

→ Let's talk about this one now

https://en.wikipedia.org/wiki/Single-page_application

Single-page web app

Single page web app

- The server always sends the same one HTML file for all

requests to the web server.

- The server is configured so that requests to /<word> would

still return e.g. index.html.

- The client JavaScript parses the URL to get the route

parameters and initialize the app.

index.html

GET localhost:3000/

Single page web app

- The server always sends the same one HTML file for all

requests to the web server.

- The server is configured so that requests to /<word> would

still return e.g. index.html.

- The client JavaScript parses the URL to get the route

parameters and initialize the app.

index.html

GET localhost:3000/dog

Single page web app

Another way to think of it:

- You embed all your views into index.html

- You use JavaScript to switch between the views

- You configure JSON routes for your server to handle sending

and retrieving data

index.html

GET localhost:3000/dog

Dictionary example

Let's write our dictionary example as a single-page web app.

Recall: Handlebars

For our multi-page dictionary app, we had two handlebars

files: index.handlebars and word.handlebars

index.handlebars

word.handlebars

SPA

In a single-page

web app, the

HTML for both

the Search page

and the Word

page are in

index.html:

Server-side routing

For all requests that are not JSON requests, we return

"index.html"

Client-side parameters

All views are hidden at first by the client.

Client-side parameters

When the page loads, the client looks at the URL to decide

what page it should display.

Client-side parameters

To display the word view, the client makes a fetch()

requests for the definition.

Completed example

Completed example code:

- dictionary-spa

- See run instructions

https://github.com/yayinternet/mongodb-examples/tree/master/dictionary-spa
https://github.com/yayinternet/mongodb-examples/blob/master/README.md#dictionary-spa

Authentication

Adding user login

What if you want to add user login to your web page?

- For example, what if we extended the dictionary app so

that you had to log in before you could create a new

word?

Authentication is hard

Trying to write your own login system is difficult:

- How are you going to save passwords securely?

- How do you help with forgotten passwords?

- How do you make sure users set a good password?

- Etc.

Luckily, you don't have to build your own login.

OAuth2

- OAuth2 is a standard for user authentication

- For users:

- It allows a user to log into a website like AirBnB via

some other service, like Gmail or Facebook

- For developers:

- It lets you authenticate a user without having to

implement log in

- Examples: "Log in with Facebook"

https://en.wikipedia.org/wiki/OAuth

OAuth2 APIs

Companies like Google, Facebook, Twitter, and GitHub have

OAuth2 APIs:

- Google Sign-in API

- Facebook Login API

- Twitter Login API

- GitHub Apps/Integrations

- OAuth2 is standardized, but the libraries that these

companies provide are all different.

- You must read the documentation to understand how

to connect via their API.

https://developers.google.com/identity/sign-in/web/
https://developers.facebook.com/docs/facebook-login
https://dev.twitter.com/web/sign-in/desktop-browser
https://developer.github.com/apps/

Using OAuth2

All OAuth2 libraries are going to be different, but they work

like the following:

1. Get an API key

2. Whitelist the domains that can call your API key

3. Insert a <script> tag containing <company>'s API

4. In the frontend code:

a. Use <company>'s API to create a login button

b. When the user clicks the login button, you will get

information like:

i. Name, email, etc

ii. Some sort of Identity Token

Aside: API keys

Generally you're not supposed to store API keys in your

GitHub repo, even though we did in some lecture examples.

→ How are you supposed to store API keys?

API keys: Store in Env Vars

Generally you're not supposed to store API keys in your

GitHub repo, even though we did in some lecture examples.

→ How are you supposed to store API keys?

→ Best practice: Use Environment Variables

- Set the environment variable on your host, such as

Heroku

- Can access the environment variable's value in NodeJS

via process.env.VAR_NAME

https://12factor.net/config
https://devcenter.heroku.com/articles/config-vars
https://devcenter.heroku.com/articles/config-vars

Using OAuth2

You need to authenticate the identity of the client on the

backend as well:

- In the backend code:

- Use <company>'s libraries to verify the token from

the client is a valid token

Using OAuth2: Frontend

- Load the Google API by calling

Google's library functions with the

client id

- Add a button that, when clicked,

prompts the user to log into Google

Using OAuth2: Frontend

Using OAuth2: Frontend

- When the user logs in, the login

callback will fire with information

about the user

- Name, email, etc

- Will also include an

IdentityToken, which will expire

after a certain amount of time

Using OAuth2: Backend

POST /create

- When we want to save information to

the client, we should send along the

IdentityToken

Using OAuth2: Backend

POST /create

- NodeJS can then call into Google's

Login endpoint to verify the

IdentityToken is valid and to get the

user's email, name, etc.

Adding user login

Adding user login to dictionary:

- Now we have two collections: Users and Words

Saving words

Every word now has an author associated with it:

MongoDB database design

For more on MongoDB database design, MongoDB wrote a

short, helpful blog series:

- 6 Rules of Thumb for MongoDB Schema Design:

- Part 1: Basic modeling techniques

- Part 2: Referencing

- Part 3: Design recommendations

For *a lot* more on database design, take a database class!

https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-schema-design-part-1
https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-schema-design-part-1
https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-schema-design-part-2?_ga=2.131565967.1448836585.1496433077-586642455.1495427291
https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-schema-design-part-3?_ga=2.131565967.1448836585.1496433077-586642455.1495427291

